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Abstract

The goal of our project is to study possible ways to decompose the Multiple Control
Toffoli gate (TOFn), a gate that is important to implement efficiently for near-term quan-
tum computers. TOFn gates are analogous to the classical (n−1)-input AND gates. They
are used in various error correction schemes and function as an important primitive for de-
composing arbitrary multiple qubit gates into physically implementable circuits. However,
despite its ubiquity, optimal decomposition of TOFn is unknown in general. Our work fo-
cuses on improving the quantum circuits that implement TOFn with respect to the number
of controlled-not (CNOT) gates and T gates, which are the most difficult elementary gates
to implement physically.

In this report, we show 2n− 2 and 3
2n− 1 lower bounds for the CNOT cost of relative

phase Toffoli gates (a generalization of multiple control Toffoli gates), implemented with
read only, and read-write memory respectively. We also provide a proof showing that the
known implementation of RTOF 4 is CNOT-optimal. Finally, we provide a systematic
construction of TOFn which improves on existing implementations of TOFn in terms of
CNOT-cost, T-cost and Ancilla-count.

2



Acknowledgments

The RIPS program is funded by NSF and several industrial corporations through
Institute of Pure and Applied Math (IPAM). We do appreciate the generous
funding and the environment provided by IPAM. The project was made possi-
ble by the efforts of IPAM staff. We would also like to express our gratefulness
to Dr. Serna for her help in the presentations, Mr. Hassinger for his works
to coordinate the project with IBM Quantum, and Mr. Abir for his help to
promote the project. Finally, we would like to thank Dr. Maslov especially for
his clarifications of directions and his suggestions on our research.

3



Contents

Abstract 2

Acknowledgments 3

1 Introduction 5
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Rigor and Vigor 8
2.1 Hilbert Space Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 The Tensor Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Quantum Computing Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Lower Bounds and Optimality 16
3.1 CNOT -cost of RTOFn in ROM . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 CNOT -cost of RTOFn in RW . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Conjectures on CNOT -cost of RTOFn . . . . . . . . . . . . . . . . . . . . . 19
3.4 Optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Upper bounds and Constructions 23
4.1 Constructing RTOFn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Constructing TOFn with One Ancilla . . . . . . . . . . . . . . . . . . . . . 28

5 Conclusion and Future Works 31

6 Appendix 32
6.1 Lemmas for Lower Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.2 Optimality of MGate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Reference 46

4



Chapter 1

Introduction

1.1 Background

The field of quantum computing lies at the natural intersection of the related fields of
computer science, information theory, and quantum mechanics. Quantum computing, as
the name implies, is fundamentally governed by the laws of quantum mechanics. These
laws, first presented mathematically by John von Neumann in 1932 [22], state that while
quantum systems can potentially occupy multiple states simultaneously, in a phenomena
known as superposition, these superpositions of states collapse into a single state upon
observation or measurement.

The field of information theory—in particular quantum information theory—aims to
examine the ways in which quantum systems may be used to store and transfer information.
Although it may be self-evident that a quantum system in a superposition state contains
more information than a classical system in a non superposition state, due to the fact that
superpositions collapse upon measurement it is less obvious how the information stored in
a superposition state can actually be used. In fact, Holevo 1973 [13] demonstrated that the
amount of information which could be retrieved from a quantum system is no more than
the information which is given by a particular observation of the system. Furthermore,
Wootters and Zurek 1982 [24] demonstrated that quantum systems could not be copied.

Although it remained unclear at this point how quantum systems could improve upon
classical computers, Paul Benioff [4] proved that a classical Turing machine could be imple-
mented using quantum systems. This was the first demonstration that quantum systems
could be used to perform any computation a classical computer could. Following this re-
sult, in 1982, Richard Feynman speculated that controlled quantum systems could be used
to help simulate more complex quantum systems—a task which classical computers were
known to be unable to do [8]. Soon thereafter David Deutsch (1985) formalized the notion
of a universal quantum computer, or quantum Turing machine, using many of the axioms
still in use today [6]. To summarize this formalism, quantum bits (or qubits) are two state
quantum systems which can be mathematically represented as a vector given by linear
combination of these states. Quantum logic gates then act on these qubits by manipulat-
ing these quantum systems. These transformations can be mathematically represented by
unitary matrices.

Despite the groundwork of quantum computation having been laid, there were no con-
crete examples of problems which had an efficient solution on quantum computers but no
such solutions on classical computers until the advent of the Deutsch–Jozsa algorithm in
1992 [7]. Although this algorithm has little practical use, it motivated further research into
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quantum algorithms and complexity. Perhaps the most well-known, as well as one of the
first quantum algorithms to have a practical use, was Shor’s factoring algorithm (1994) [20].
This algorithm allows quantum computers to factor large semiprime numbers in polyno-
mial time. Since many commonly used encryption methods rely on the difficulty of factoring
large numbers, Shor’s algorithm, once physically realizable at a large enough scale to factor
these numbers, poses a threat to computer security.

Today, many quantum algorithms which outperform their classical counterparts exist,
including Grover’s search algorithm which performs an unstructured search on a database
in O(

√
n) time (opposed to the classical equivalent which takes O(n) time)[10]. More theo-

retical work has also been done to evaluate the benefit that quantum computers have over
classical computers. In 1993 Ethan Bernstein Umesh Vazirani defined the class of problems
which could be solved by quantum computers in polynomial time and demonstrated that
any problems which could be solved by classical computers in polynomial time also belong
to the aforementioned class of problems [5]. Furthermore, results such as Shor’s algorithm
have since shown that some NP (problems with solutions that can be verified in polynomial
time without known polynomial time classical solutions) can be solved in polynomial time,
giving evidence that quantum computers are more powerful than classical computers.

Clearly, quantum computers have huge potential to revolutionize the world of compu-
tation; however, there remain some physical limitations which prevent quantum computers
from outperforming their classical counterparts in most practical applications. Despite the
abundance of research done in academia and by industry leaders such as IBM, the tech-
nology required to build quantum computers is still in its infancy. Due to the necessary
small size, and often extreme low temperature of components necessary to access quantum
effects, fabrication of such components is difficult and imperfect. Moreover, the sensitivity
of these components to external interference means that quantum computers will require
robust error correction which requires multiple physical qubits to implement one usable
logical qubit. Due to these physical limitations, current quantum computers are limited to
fewer than 100 qubits, which severely hinders the practical use of quantum computers.

More challenges arise when trying to implement particular quantum algorithms. Due
to the difficulty of directly implementing arbitrary, high-fidelity operations on quantum
systems with multiple qubits, current implementations of quantum computers use some
finite set of 1 and 2 qubit quantum gates, known as a universal gate set to approximate
arbitrary operations. One such universal gate set, and the universal gate set used for the
the results of this paper is the Clifford + T gate set. Even within the Clifford + T gate
set, we see that the sole 2 qubit gate, the controlled not (CNOT ), is more error prone and
takes more time to execute than other Clifford + T gates[19]. Among the 1 qubit gates,
the T gate (defined in section 2) is also expensive to implement fault-tolerantly. Thus when
designing quantum circuits with the Clifford + T library , it is important to optimize them
with respect to CNOT gate count and T gate count.

However, it is difficult to determine when a particular implementation of a quantum
gate is optimal. This is especially the case for gates with the potential to entangle qubits
(i.e. modify the system so that the state of one qubit cannot be described independently of
the others). One of the simplest and most commonly encountered multiple qubit entangling
quantum gates is the 3-qubit Toffoli gate (TOF ), and its n-qubit generalizations TOFn,
which can be thought of as a logic gate that implements (n − 1)-input AND, bit-wise
product of n− 1 control qubits, and writes the output to a target qubit. The Toffoli gate is
significant in that it is universal for classical computation, and coupled with the Hadamard
gate it is universal for quantum computation. It is also used in error correction schemes,
and is an important primitive for decomposing multiple-input quantum gates into 1 and 2
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qubit gate circuit implementations.
Despite its relative simplicity and ubiquity, optimal implementations of Toffoli gates

beyond the n = 3 case are unknown, and current implementations are believed to be
further optimizable. Thus, the primary focus of our work is to determine which current
implementations of Toffoli gates are optimal as well as to find improved implementations
of Toffoli gates which are not optimal. Due to the high frequency in which Toffoli gates
are used as intermediate steps when decomposing a many-qubit quantum operation into
Clifford + T gates, improved implementations of Toffoli gates will in turn result in more
optimized implementations of various other quantum operations.

1.2 Overview

We approached the topic of optimizing the multiple control Toffoli gate from a few perspec-
tives. First, we showed general lower bounds for Toffoli gate variants implemented with
both read-only and read-write memory. We then go on to give explicit constructions for
RTOFn and demonstrate how these constructions can be used to implement Toffoli gates
which offers practical improvements.

In particular, we focus on studying the lower and upper bound of n-qubit relative phase
Toffoli Gates (RTOFn) on ancilla-free quantum circuits with read-only memory (ROM).
The relative phase implementation of TOF can be a powerful tool for optimizing its physical
realizations. Efficient constructions of RTOFn can be used directly to build efficient TOFn

[15] when given access to ancillary qubits. Thus lower and upper bounds on the CNOT -cost
of RTOFn directly imply related bounds on the CNOT -cost of TOFn.

We begin our investigation by studying the the cost of implementing the n-qubit Toffoli
gate (TOFn), which is drastically reduced with the access to even one ancillary qubit. TOF
gates are ubiquitous in quantum circuits, and significant effort into finding its efficient real-
izations point to an interesting time-space trade-off. With dn−32 e ancillary qubits available,
the best known implementation uses 6n − 12 CNOT gates [15]. However, when we limit
the number of ancillary qubit to just one, the best known implementation takes 12 +O(1)
CNOT s, although neither of these bounds are proven to be tight.

This report will be structured as follows. In the following chapters, we will first introduce
the mathematical formalism of quantum circuits, gates and qubits, as well as some helpful
definitions and lemmas used throughout the report. Then, our main results are collected
under two sections. We will first show, in Chapter 4, various lower bounds on the CNOT-
cost of RTOFn in different settings. These will be the first set of lower bounds known for
RTOFn in literature. In Chapter 5, we will present a construction of RTOFn which gives
rise to a family of circuits that implements TOFn more efficiently than previous best known
constructions in terms of CNOT-cost, T-cost and ancilla-count. Finally, our conclusion in
chapter 6 will discuss open problems and future works.
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Chapter 2

Rigor and Vigor

2.1 Hilbert Space Basics

The methods of quantum computing, at least of what will be discussed here, are primarily
linear algebra and group theory. These two domains are unified by the notion of a Hilbert
space, which is the setting of quantum computing.

Definition 1. Let H be a vector space over the complex numbers with an inner product 〈,〉.
We say H is a Hilbert space when H is complete with respect to the norm ‖v‖ =

√
〈v, v〉.

The power of Hilbert spaces comes from their inner product as they give geometric
intuition for what is otherwise hard to visualize. The inner product generalizes the concepts
of angles, parallel lines, orthogonality, and distance. Another feature of Hilbert spaces which
is missing in generic vector spaces is that a Hilbert space is always naturally isomorphic to
its dual.

Definition 2. Let H be a Hilbert space. Then let H† denote the collection of continuous
linear transformations from H to C.

The fact that H and H† are isometrically isomorphic is best seen using bra-ket notation.
Given a fixed Hilbert space H let |ψ〉 denote a vector in H where ψ could be any handy
index, such as Boolean bits. Inspired by the inner product, we can then define an element of
〈ψ| ∈ H† given by |ϕ〉 7→ 〈ψ|ϕ〉, the inner product of 〈ψ| and 〈ϕ|. The Riez-Representation
theorem establishes that this correspondence between H and H† is bijective and in fact an
isometric isomorphism.

Since Hilbert spaces is not only a vector space, it is also a metric space, which is why
it is important to consider the linear automorphisms of H which are also an isometry. In
fact, these linear transformations deserve a name.

Definition 3. Let H be a Hilbert space and T : H → H a linear transformation. If for all
|ψ〉 ∈ H, ‖T |ψ〉‖ = ‖ψ‖, then T is said to be a unitary transformation.

There is a more useful and purely algebraic characterization of unitary transformations.
This characterization relies on the concept of the adjoint of a linear transformation.

Definition 4. Let H be a Hilbert space and T : H → H a linear transformation. The
adjoint of T , denoted T †, is the unique linear map satisfying 〈Tv,w〉 = 〈v, T †w〉.

Here are some useful facts about the adjoint.
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Proposition 1. Let H be a Hilbert space, S, T : H → H are linear transformations, and
α, β ∈ C. Then

• There exists a unique adjoint for both T and S,

• T †† = (T †)† = T ,

• (αS + βT )† = αS† + βT †,

• (TS)† = S†T †.

Proposition 2. Let H be a Hilbert space, then the collection of unitary matrices is precisely
the set of invertible transformations whose adjoint is its inverse, i.e. TT † = T †T = I.

The collection of unitary transformations of a Hilbert space H form a group called the
unitary group of H and is denoted by U(H).

Hilbert space theory is plenty of fun for the whole family, but we no longer need such
generality. The prototypical Hilbert spaces are Cn for some n ∈ N and these are where
quantum computing takes place. The inner product on Cn is given by

〈v, w〉 =
(
v1 v2 · · · vn

)w1
...
wn

 = v1w1 + · · ·+ vnwn.

Because of this, if |ψ〉 =

α1
...
αn

 , then 〈ψ| =
(
α1 · · · αn

)
. Since the norm ‖ψ‖2 = 〈ψ|ψ〉,

then ‖ψ‖2 =
∑n

i=1 |αi|2, which is the standard norm on Cn.
We also have a convenient characterization of the adjoint of linear transformations from

Cn → Cn, since these correspond directly with complex n×n matrices. We will treat linear
transformations and matrices as interchangeable objects from here on out.

Proposition 3. Let U ∈ Cn×n, then the adjoint of U is the Hermitian conjugate of U , i.e.
for all 1 ≤ i, j ≤ n, (U †)ij = (U)ji.

We let U(n) be the unitary group of Cn.

Definition 5. The special unitary group is SU(n) = {U ∈ U(n) : det(U) = 1}.

This group is important to us for two reasons. First, it is not hard to convince yourself
that all elements of U(n) can be expressed as a product of a unit scalar and a special unitary
matrix. Second, SU(2) can be parameterized nicely which allows for simpler calculations.

Proposition 4. SU(2) =

{(
x y
−y x

)
: x, y ∈ C, |x|2 + |y|2 = 1

}
.

It is easy to see that the mapping (x, y) 7→
(
x y
−y x

)
is injective and surjective. Because

of this, we can save time on writing out the whole matrix and represent U ∈ SU(2) as [x, y].
Since the mapping is a bijection we can define [x, y][u, v] = [xu− yv, xv + yu].
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2.2 The Tensor Product

What we have built up so far would suffice to study 1-qubit quantum systems, but unfortu-
nately the complexity of the system grows exponentially as the number of qubits increase.
To study these systems we need to appeal to Tensor products.

Definition 6. Let V and W be complex vector spaces. Then the tensor product V ⊗W is
generated by elements of the form v ⊗ w with v ∈ V and w ∈W subject to the relations

• v ⊗ w1 + v ⊗ w2 = v ⊗ (w1 + w2),

• (v1 + v2)⊗ w = v1 ⊗ w + v2 ⊗ w,

• For all α ∈ C, (αv)⊗ w = v ⊗ (αw) = α(v ⊗ w).

For finite dimensional spaces, such as the ones we carry about, this product is very well
behaved, despite being counter-intuitive.

Proposition 5. Let V and W be complex vector spaces of dimensions n and m, with bases
given by {e1, · · · , en} and {f1, · · · , fm}. Then {ei ⊗ fj : 1 ≤ i ≤ n, 1 ≤ j ≤ m} is a basis
for V ⊗W .

Fortunately, when we restrict our attention to Cn the tensor product of elements can
be quite easy to calculate. First observe that Cn ⊗ Cn = Cn×n, so intuitively, the tensor
product of two vectors of the same dimension should result in a vector of length n2.

Proposition 6. Let v, w ∈ Cn, then v ⊗ w =

v1w...
vnw

 .

An important thing to note is that if v and w are both unit vectors, then v ⊗ w is as
well. Recall that the space of n × n complex matrices is also a vector space so their is a
notion of tensor products of matrices, except this product is called the Kroenecker product.

Definition 7. Let U ∈ Cm×n and V ∈ Cp×q, then U ⊗ V ∈ Cmp×nq and

U ⊗ V =

u11V · · · u1nV
...

...
um1V · · · umnV

 .

The well behaved nature of the Kronecker product is partly responsible for making it
possible to study quantum computing.

Proposition 7. Let A ∈ Cm×n, B ∈ Cn×k, U ∈ Cp×q, V ∈ Cq×r, x ∈ Cn and y ∈ Cq. Then

• (A⊗ U)(B ⊗ V ) = AB ⊗ UV,

• (A⊗ U)(x⊗ y) = (Ax)⊗ (Uy),

• (A⊗ U)† = A† ⊗ U †,

• (A⊗ U)−1 = A−1 ⊗ U−1.

• If A and U are both unitary then A⊗ U is as well.

These properties are what makes studying quantum circuits so fruitful, but this will
be shown in the next section. Since we have now built up enough groundwork to dis-
cuss particular gates and how to read circuits, we will move onto the basics of quantum
computing.
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2.3 Quantum Computing Basics

A n-qubit quantum computer takes in n-qubits and applies gates to these qubits and will
then output an n-qubit after a measurement is applied to the quantum computer. This is
the typical architecture of a quantum algorithm, yet there are exceptions.

Definition 8. A qubit is a unit vector in C2 and the state of a single qubit quantum
computer is a qubit. More generally, an n-qubit is a unit vector in (C2)⊗n and the state of
a n-qubit quantum computer is a n-qubit.

As stated earlier, if |ψ〉 and |ϕ〉 are qubits then |ψ〉⊗|ϕ〉 is a 2-qubit. The typical way to

represent a 1-qubit is as a normalized superposition (linear combination) of |0〉 =

(
1
0

)
and

|1〉 =

(
0
1

)
. More explicitly, the set of states a 1-qubit can be is {α|0〉+β|1〉 : |α|2+|β|2 = 1}.

This is where the computational aspect of quantum computing is apparent. The single bits 0
and 1 correspond to the orthonormal basis |0〉 and |1〉 and bit strings of length n correspond
to the n-fold tensor product of |0〉 and |1〉.

Definition 9. The computational basis for (C2)⊗n is the collection {|x1〉⊗ · · ·⊗ |xn〉 : xi =
0 or xi = 1}. Given a basis element |x1〉 ⊗ · · · ⊗ |xn〉, we represent it as |x1 · · ·xn〉

For example, |0〉 ⊗ |1〉 ⊗ |0〉 = |010〉. The column vector which |x1 · · ·xn〉 represents is
0 on all components except for the component whose base two representation is x1 · · ·xn.

To measure the state of a quantum computer is the only irreversible operation in any
quantum algorithm. We will first show how measurements work in the simple case of a
single qubit quantum system. Suppose we have a qubit with a state |ψ〉 = α|0〉+β|1〉, then
a measurement of |ψ〉 yields |0〉 with probability |α|2 and |1〉 with probability |β|2. This is
well defined since the sum of these probabilities is 1 and both are positive. More generally,
given an n-qubit with a state |ψ〉 =

∑
x∈{0,1}n αx|x〉, then the probability of measuring the

state to yield |x〉 is |αx|2.
Recall that for any nonzero complex number α, there exists a positive real r and θ ∈

[0, 2π) such that α = reiθ. This decomposition is unique and θ is the phase of α and r is the
magnitude. Observe how the only relevant property of the coefficients of the computational
basis representation of a state is the magnitude of the coefficient and not its phase. This
important fact allows us to reduce the cost by implementing a circuit which has all the
correct magnitudes but may differ with the phases.

Another key concept is entanglement.

Definition 10. • A state |ψ〉 of an n-qubit quantum computer is a product state if
|ψ〉 = |ψ1〉 ⊗ · · · ⊗ |ψn〉. Otherwise, |ψ〉 is said to be entangled.

• A unitary matrix U ∈ U(n) is said to be separable if U = U1⊗ · · ·⊗Un and is said to
be partially separable if U = U1 ⊗ · · · ⊗ Um for some m ≤ n.

• U ∈ U(n) is said to be piece-wise separable if U = VW where V,W ∈ U(n) are both
partially separable.

Definition 11. We define a set of gates by the matrices they represent

• Rotation around x-axis: Rx(θ) =

(
cos( θ2) −i sin( θ2)

−i sin( θ2) cos( θ2)

)

11



• Rotation around y-axis: Ry(θ) =

(
cos( θ2) − sin( θ2)

sin( θ2) cos( θ2)

)

• Rotation around z-axis: Rz(θ) =

(
e
iθ
2 0

0 e−
iθ
2

)

• Pauli-X Gate: X =

(
0 1
1 0

)

• Pauli-Y Gate: Y =

(
0 −i
i 0

)

• Pauli-Z Gate: Z =

(
1 0
0 −1

)

• CNOT Gate: CX =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 1

• Hadamard Gate (H Gate): H = 1√
2

(
1 1
1 −1

)

• T Gate: T =

(
1 0

0 e
iπ
4

)
Definition 12. We define the Controlled-Z Gate by the linear transformation it performs:
CZ(a, b) : |a, b〉 7→ (−1)ab|a, b〉. Note that CZ(a, b) = CZ(b, a)

Definition 13. We define the Toffoli Gate by the linear transformation it performs:
TOF (a, b, c) : |a, b, c〉 7→ |a, b, ab⊕ c〉

Definition 14. We define TOFn by the linear transformation it performs:
TOFn(x1, ..., xn−1, y) : |x1, ..., xn−1, y〉 7→ |x1, ..., xn−1, x1 · · ·xn−1 ⊕ y〉. The n − 1 qubits
x1, ..., xn−1 are called control qubits and y is called target qubit. Hence, the Toffoli Gate
we defined in the previous definition (Definition 13) is a TOF 3 Gate with 2 controls and 1
target. the CNOT gate could be also treated as a special case of Toffoli Gate with 1 control
qubit and 1 target qubit.

2.4 Circuits

Circuits are used to visualize and manipulate quantum algorithms. The simplest circuit,
besides the trivial one, is

|q1〉 U

Circuits are read left to right and what the input is a qubit and as the qubit moves
along the wire the gates which are on the wire are applied to the qubit. In this case, |q1〉 is
fed into the wire from the left and the output on the right would be the state, U |q1〉.

1(In this report, CNOT and CX are used interchangeably)
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Because of this we have the following identity,

|q1〉 U V = |q1〉 UV

Things become more complicated with a 2-qubit algorithm. Suppose have the following
circuit,

|q1〉 U

|q2〉 V

This is equivalent to the matrix form (U |q1〉) ⊗ (V |q2〉) = (U ⊗ V )(|q1〉 ⊗ |q2〉). This
works when both our state and and gates are separable. In the case of the CNOT gate,
things are not so easy. The CNOT gate has a circuit symbol

•

Where the qubit is called the control qubit and the bottom qubit is called the target
qubit. The CNOT gate is not separable and so this gate entangles the two qubits.

Some gates are more difficult to implement than others. The TOF gate for example
requires multiple CNOT gates which are themselves difficult to implement. Hence, cost
saving implementations of TOF are highly desirable even if some of the information is
muddled. This is the motivating concept behind relative phase.

Definition 15. Let A and B be matrices of the same dimension. We say that A is a relative
phase of B if for all i, j, |Aij | = |Bij |. We say that A is a global phase of B if A = αB for
some α with |α| = 1.

We denote the family of gates that are relative phases of TOFn by RTOFn. When
we restrict our attention to U(n), relative and global phase both determine equivalence
relations by A is equivalent to B if A is a relative, respectively a global, phase of B. But
only equivalence up to global phase determines a congruence relation. This allows for great
syntactic manipulation with global phase.

We define the following circuit primitives which we will use throughout this paper:

Definition 16. We define a shorthand notation for the Margolus gate as in Figure 2.1.
Note that Margolus Gate is a RTOF 3.

|q1〉 • •
|q2〉 • = • •

|y〉 Mar H T T † T T † H

Figure 2.1: The Margolus Gate
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|q1〉 • •
|q2〉 • •

|y〉 H T T † T T † H

Figure 2.2: The CCiX Gate

Definition 17. The CCiX gate is implemented as in Figure 2.2

Definition 18. We refer to the RTOF 4 gate presented by Maslov in [15] as the Mgate.
The circuit implementation of Mgate is shown in Figure 2.3

|q1〉 • •
|q2〉 • •
|q3〉 • •
|y〉 H T T † H T T † T T † H T T † H

Figure 2.3: The Mgate

Definition 19. For an arbitrary gate P that acts on qubits q1, ..., qn, we use this notation
P (q1,...,qn) to specify that P operates on qubits q1, ..., qn. For example, if l is a qubit, we
denote Z(l) to be a Z gate that acts on qubit l. Similarly, we define CZ(i,j) to denote that
the CZ gate acts on qubit i and qubit j. For CX gate (i.e. CNOT gate), we use this
notation CX(i;j) to denote that i is the control qubit and j is the target qubit. (Notice the
semicolon in the superscript of CX(i;j) separates the control from the target. The qubit
appear before the semicolon is the control and the qubit appear after the semicolon is the
target)

Remark 1. CX(i;j) can be obtained by conjugating the CZ(i;j) with Hadamard Gates on
both side, and similarly, CZ(i;j) can be obtained by conjugating the CX(i;j) with Hadamard
Gates on both side.

• •
=

H • H

Remark 2. Note that the CNOT gate together with single qubit unitary gates are universal.
Hence, when we are considering circuit designs, we could restrict ourselves to the set of
single qubit unitary gates and the CNOT gate. Furthermore, by Remark ??, one can see
that CZ gate together with single qubit unitary gates are also universal. Hence, we could
similarly restrict ourselves to single qubit unitary gates and the CZ gate when considering
circuit designs.

Definition 20. We define the notion of a CX circuit to be a circuit L such that CNOT
gates are the only entangling gate between mulitple qubits. Similarly, define a CZ circuit to
be a circuit C such that CZ gates are the only entangling gate between multiple qubits.

Definition 21. We define two notions of load (load factors) here.
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• Let L be a CX circuit. Let l be a qubit in L. We define the load (load factor) of l
to be the number of CX(l;?) gates (i.e. The number of CX gates that have l as the
control qubit).

• Let C be a CZ circuit. Let q be a qubit in C. We define the load (load factor) of q to
be the number of CZ gates that are incident to q.

Note that the notion of load (load factor) is different in different contexts.

Definition 22 (Ancillary Qubits). The ancilla in a circuit are extra qubits that help the
computation. They are not involved in the logical operations, but they give extra space to
perform computations. We also distinguish two types of ancilla.

• Clean Ancilla: clean ancilla are initially assumed to be all in states |0〉 before com-
putations, and they should be returned to states |0〉 after the computations.

• Dirty Ancilla: dirty ancilla can be in any arbitrary states before computations, and
they should be return to their initial states after the computations.

Definition 23. We define the Read-Only-Memory Model (ROM) and the Read-Write-
Memory Model (R-W) with respect to TOFn and RTOFn. Let C be a circuit that computes
TOFn or RTOFn with q1, ..., qn−1 as control qubits and qn as target qubit.

• We say that C is in Read-Only-Memory Model (ROM) if we never change the states
of q1, ..., qn−1 in C.

• We say that C is in Read-Write Memory Model (R-W) if we are allowed to change
the states of q1, ..., qn−1 in C.

Definition 24. Let A be a 2× 2 matrix. We say A is sparse if A is a diagonal matrix or
an anti-diagonal matrix.

Definition 25. We say that qubit l in a circuit C is sparse if all the single qubit unitaries
on l can be assumed as diagonals.

Remark 3. If qubit l in circuit C is sparse and circuit C has at least two qubits, we know
that all the single qubit unitaries on l are diagonals. Furthermore, we can merge all the
diagonals into one diagonal matrix without affecting the computation.

Definition 26. We define −qi = {q1, ..., qn} \ {qi}. Hence, if we write P (−qi), we mean
that P operates on the set of qubits {q1, ..., qi−1, qi+1, ..., qn}.

Definition 27. Suppose L is a n-qubit network such that the only single qubit unitary acting
on qubit l is a diagonal matrix D. Furthermore, assume that the CZ gates incident to l are
CZ(l,q1), ..., CZ(l,qn) (q1, ..., qn are not necessarily different). In other words, the circuit can

be written as D(l)S
(−l)
1 CZ(l,q1)S

(−l)
2 CZ(l,q2)...CZ(l,qm)S

(−l)
m .

By removing l = |0〉, we mean that we consider the circuit C0 in the n− 1-qubit network

without l defined by 〈0|D|0〉S(−l)
1 S

(−l)
2 ...S

(−l)
m . In other words, it is the sub-circuit of L if

we input q0 = |0〉 into the original circuit L.
By removing l = |1〉, we mean that we consider the circuit C1 in the n− 1-qubit network

without l defined by 〈1|D|1〉S(−l)
1 Z(l)S

(−l)
2 Z(l)...Z(l)S

(−l)
m .

Remark 4. Note that if L computes U . Let l be a sparse qubit and assume U commutes
with Z(l). In other words, U can be written as |0〉〈0| ⊗ U0 + |1〉〈1| ⊗ U1 Then the circuit
C0 obtained from removing l = |0〉 computes U0 and the circuit C1 obtained from removing
l = |1〉 computes U1.
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Chapter 3

Lower Bounds and Optimality

In this chapter, we will show 2n− 2 and 3
2n− 1 lower bounds on the CNOT -cost of ancilla

free implementations of RTOFn with ROM and read-write memory respectively. Some
corollaries include the optimality of some implementations of RTOFn. We conjecture 3n−6
to be the lower bound on the CNOT -cost of ancilla free implementations of RTOFn with
ROM, and record our attempts in proving the conjecture as well as some partial results.
Furthermore, we will also include a proof that RTOF 4 given by Maslov in 2016 [15] is
optimal in CNOT -count.

3.1 CNOT -cost of RTOF n in ROM

We prove the following lower bound on the number of CNOT gates required to implement
RTOFn with ROM.

Theorem 1. Any relative phase Toffoli gate with n-1 read-only control qubits and one target
qubit cannot be implemented with fewer than 2n− 2 CNOT gates for n ≥ 4

The proof of this theorem consists of two parts. We will first show a lower bound of
2n−3, and then show that a circuit with exactly 2n−3 CNOT s cannot implement RTOFn.

3.1.1 Part 1: 2n− 3 CNOT s are necessary

To aid us in our proof we first make the following observation:

Observation 1. Each qubit of the control group must have a load of at least 1 in order to
implement a relative phase Toffoli.

To see this, we assume for contradiction that we have a ROM RTOFn implementation
with some qubit l of load 0. Then only single qubit unitaries act on l, which means the
circuit is separable with respect to systems {l} and Q\{l}, contradicting the behavior of
RTOFn.

Observation 2. Given a qubit q1 in circuit C with Clifford + T gates. If all single qubit
gates acting on q1 is sparse and no CNOT s target q0, then there exists a subcircuit C||q1〉
on q2, . . . , qn which implements the action of C for each input state of q1.
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Let input state be |0〉 or |1〉. Since all gates acting on q1 is sparse, the state of q1 will
always be either |0〉, |1〉 with no superposition. In which case all CNOT s (if any) controlled
by q1 is equivalent to I or X on other qubits respectively, which gives the desired subcircuit.
It follows by linearity that the observation hold for arbitrary input states.

Now we proceed with part one of the proof.

Lemma 1. A piece-wise separable circuit cannot implement RTOFn in ROM for n ≥ 3

Proof. Note that any piece-wise separable circuit can be represented by the following dia-
gram for n ≥ 3:

|q1〉 S1

|q2〉

S0|q3 . . . qn−1〉
S1

|y〉

Let UC = (I(q2) ⊗ S1) × (I(q1) ⊗ S0) be the unitary operator describing the action of the
previous circuit. Fixing q1 = |0〉, we note that the sub-circuit consisting qubits Q\q1
implements the identity up to a relative phase, written as U0 = (I(q2) ⊗ S1

∣∣
|0〉)S0

∼= I. Note

this is possible by observation 2, where the conditions are trivially satisfied with ROM.
Similarly, fixing q1 = |1〉, we have a sub-circuit U1 = (I(q2) ⊗ S1

∣∣)|1〉S0 ∼= TOFn−1. We can
compose a new circuit by applying the inverse of U0 to U1:

U1U
†
0 = (I(q2) ⊗ S1

∣∣
|1〉)S0[(I

(q2) ⊗ S1
∣∣
|0〉)S0]

†

= I(q2) ⊗ (S1
∣∣
|1〉 × S1

∣∣†
|0〉)

∼= RTOFn−1 × I−1 = RTOFn−1,

which would be absurd, since q2 have load 0, as illustraded below.

|q2〉
|q3 . . . qn−1〉

S1
∣∣
|0〉 S1

∣∣†
|1〉|y〉

Remark 5. Note that a similar proof also works for R-W Memory Model if one of the
control qubits is sparse. We don’t include the proof here because the idea is the same but
the proof is more laborious.

Corollary 1. The number of CNOT gates necessary to implement RTOFn with ROM is
at least 2n− 3 when n ≥ 3

Proof. Assume for contradiction, there exists a circuit that implements RTOFn with less
than 2n− 3 CNOT gates
Then there are at least two qubits qi, qj with load factor 1 in the circuits. Note that qi, qj
create a piece-wise separable circuit that was defined above, but by theorem 1, piece-wise
separable circuits could never implement RTOFn, resulting in a contradiction.
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Corollary 2. Up to permutation of control qubits, and using ROM the only possible CNOT -
structure of RTOFn with 2n−3 CNOT gates has load factor 1 on q1, and load factor 2 on all
the other control qubits q2, ..., qn−1. Furthermore, for each control qubit qi with 2 ≤ i ≤ n−1,
there is a CNOT with control on qi operating before the CNOT gate on q1, and a CNOT
with control on qi operating after the CNOT gate on q1

Proof. Note that when the number of CNOT gates in an n−qubit ROM Model is 2n− 3,
there has to be at least one control qubit with load factor 1. Indeed, there is exactly one
control qubit with load factor 1 (WLOG, call it q1), and all the other control qubits have
load factor 2.

Assume for contradiction, there is a qubit qi, 2 ≤ i ≤ n− 1 with load factor 2 such that
all the CNOT gates on qi operates either before the CNOT gate on q1 or after the CNOT
gate on q1, then we have a piece-wise separable circuit where the piece-wise separability
occurs on q1 and qi, a contradiction.

We now conclude a lower bound of 2n− 3 on the CNOT -cost of RTOFn in ROM. To
complete the proof, we need to show that no possible configurations of 2n− 3 CNOT gates
can implement RTOFn.

3.1.2 Part 2: Exactly 2n− 3 CNOT s are not sufficient

To aid the second part of our proof, we show the following lemma. The proof to these
lemmas can be found in the Appendix.

Lemma 2. Let D be a diagonal matrix and U a unitary 2×2 matrix. If X = UDU †, where
X is the Pauli-X gate, then U = HZ up to a global phase.

Lemma 3. Suppose (∗) is a n-qubit ROM circuit with m CNOT s on the target qubit and
the only other gates are single qubit unitaries acting on the target qubit. We denote the
unitary before the first CNOT as U1 and the unitary after the first CNOT as U2 and so
on until Um+1 after the final CNOT . Two additional assumptions are required.

1. There exists a qubit qk with only one related CNOT .

2. There exists a second qubit ql such that either to the left or to the right of the qk, ql is
the control bit of a CNOT gate acting on the target bit and is the only such CNOT
gate on that wire on that side of the qk CNOT .

Then (∗) cannot implement RTOFn.

We observe that by corollary 2, any possible configurations of 2n−3 CNOT gates satisfy
the conditions of theorem 3, and thus cannot implement RTOFn.

The proof of theorem 1 is complete.

3.2 CNOT -cost of RTOF n in RW

For Read-Write Memory model in general, conditions of observation 2 is often not satisfied.
For this reason, the proof we presented for theorem 1 cannot be extended and give us a
similar bound. However, a lower bound can still be proved using a corollary of Markov and
Shende’s result.[18]
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Theorem 2. Any RTOFn circuit with Read-Write memory input requires at least 3
2n− 1

CNOT gates to implement.

Proof. We proceed by induction on n. For the base case, we will prove in section 3.4
that RTOF 4 requires at least 6 > 5 = 3

24 − 1 CNOT gates to implement. The inductive
hypothesis states that RTOFn requires at least 3

2n − 1 CNOT gates to implement. To
show that RTOFn+1 requires at least 3

2(n+1)−1 CNOT s we consider a n+1 qubit circuit
C with at most 3

2(n + 1) − 2 CNOT gates. We now consider the generalized load, defined
as the number of CNOT gates target by or controlled by a given qubit. This induces a
maximum total load of 3n− 1 across n+ 1 qubits. Note that the target qubit has to have
at least load 1. Hence, the sum of loads across all the control qubits is at most 3n − 2.
Therefore, either two control qubits have loads 1, or there is a control qubit of load 2. In
the former case, the circuit C is piece-wise separable. In the latter case, without loss of
generality, the qubit is l. Note that we can assume that l is sparse by the result of Corollary
13 in [18].We remove l = |1〉 to obtain a circuit implementation of RTOFn which has less
than 3

2(n+ 1)− 1− 2 = 3
2n−

3
2 <

3
2n− 1 CNOT gates, contradiction.

3.3 Conjectures on CNOT -cost of RTOF n

For the non-relative phase TOFn case the following bound follows as a corollary of [18]:

Theorem 3. Any ancillae free read-only memory implementation of TOFn requires at least
3n− 6 CNOT gates.

Proof. We proceed by induction on n. The base case follows from the fact that 3n−6 ≤ 2n
for n ≤ 6. If we assume TOFn cannot be implemented with < 3n − 6 CNOT gates
for some n, the existence of a TOFn+1 with fewer than 3n − 3 gates would imply the
existence of a TOFn with fewer than 3n − 6 gates as [18] guarantees a qubit of load ≥ 3
in the implementation of TOFn+1. This qubit can be fixed at |1〉 resulting in a subcircuit
implementing TOFn with less than 3n− 6 CNOT gates.

The following is an attempt at a proof of the same bound for RTOFn which relies on
the following assumptions which we hope to prove with future work.

1. A circuit with the following CNOT configuration cannot implement RTOF :

|q1〉 • •
|q2〉 • •
|q3〉 • •

|y〉

2. A circuit with the following CNOT configuration cannot implement RTOF :

|q1〉 • •
|q2〉 • •
|q3〉 • •

|y〉

3. RTOF 5 requires at least 9 CNOT gates to implement.
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We can give the following conjectures if the assumptions hold.

Conjecture 1. If the above assumption hold, then any circuit implementing RTOFn with
n ≥ 6 must have at least one control qubit of load at least 3.

Proof. Assume for contradiction that we have a circuit C which implements RTOFn with
all control qubits having load < 3. If more than one qubits have load 1, then the circuit is
piecewise separable and cannot implement RTOFn. Therefore, at most one qubit have load
1. Then it follows from Lemma 3 that each control qubit of C must have load 2. We also
know that CNOT gates must also appear in two groups such that the first n−1 CNOT s are
controlled by each of the control qubits exactly once, since any configuration which doesn’t
satisfy this condition must be piecewise-separable and thus cannot implement RTOFn.

Without loss of generality, we may arrange the wires such that the first n− 1 CNOT s
are given by CX(qn−1;y), CX(qn−2;y), . . . , CX(q1;y) and the last n − 1 CNOT s are given by
CX(qσ(n−1);y), CX(qσ(n−2);y), . . . , CX(qσ(1);y), where σ is a permutation of n − 1 elements.
Now, for n ≥ 6, the Erdős–Szekeres theorem tells us that for all σ ∈ Sn−1 we must be
able to identify i < j < k such that σ(i) < σ(j) < σ(k) or σ(i) > σ(j) > σ(k). Letting
ql = |1〉 for l /∈ {i, j, k} and reducing CNOT s controlled by any ql to its single qubit X(y)

equivalent, we see that we are left with a subcircuit C ′ on {qσ(i), qσ(j), qσ(k), y}. If σ(k) <
σ(j) < σ(i), then Assumption 1 tells us that C ′ cannot implement RTOF 4. Otherwise if
σ(k) > σ(j) > σ(i), then Lemma Assumption 2 tells us that C ′ cannot implement RTOF 4.
Either way this is a contradiction since fixing m control qubits of RTOFn at |1〉 results in
a subcircuit which implements RTOFn−m.

Conjecture 2. If the above assumptions hold, then ancilla free read-only memory imple-
mentation of RTOFn for n ≥ 5 requires at least 3n− 6 CNOT gates.

Proof. We proceed by induction on n. We assume our base case and the inductive hypoth-
esis. Now assume for contradiction that we have a circuit C implementing RTOFn+1 with
fewer than 3(n+ 1)− 6 CNOT gates. Lemma 1 tells us that C must have a qubit of load
at least 3. Fixing this qubit at |1〉 results in a sub-circuit which implements RTOFn with
fewer than 3n− 6 CNOT gates, thus violating the inductive hypothesis.

Although we are unable to verify these assumptions for general RTOFn, we have proved
a couple potentially useful partial results which we present below. In fact, assumption 1
and 2 hold for special type RTOFn with respect to the target1.

First, we observe that if A is a relative phase of TOF , then A = DTOF where D is a
unitary diagonal.

Proposition 8. Circuits with CNOT structures in assumption 1 and 2 cannot implement
a special type relative phase Toffoli gate, SRTOF 4, where SRTOF 4 = DTOF 4 and D =
D1 ⊗ I.

Proof. Since RTOF 4 is a 16× 16 matrix, then D1 = diag{α1, · · · , α8}, so

D = {α1, α1, α2, α2, · · · , α8, α8}.

Consider the first circuit and observe that when we fix the first three qubits as |000〉 and
|100〉, we have,

α1I = U7U6U5U4U3U2U1 and,

1The definition of special type RTOF is given by Maslov in 2016 [15].
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α5I = U7U6U5XU4XU3U2U1,

hence U4 = α1α
−1
5 XU4X. If we now fix the first three qubits as |011〉 and |111〉, we get the

following equations,

U7XU6XU5U4U3XU2XU1 = α4I and,

U7XU6XU5XU4XU3XU2XU1 = α8X

and since U4 = XU4X, we have α−11 α4α5I = X, i.e. 1 = 0. Hence, this circuit cannot
implement TOF .

The proof for the second circuit will proceed similarly. By fixing these qubits we will
get the following constraints on the unitaries.

• |100〉 =⇒ α5I = U7XU6U5U4XU3U2U1,

• |011〉 =⇒ α4I = U7U6XU5XU4U3XU2XU1,

• |010〉 =⇒ α3I = U7U6XU5U4U3XU2U1,

• |101〉 =⇒ α6I = U7XU6U5XU4XU3U2XU1,

• |001〉 =⇒ α2I = U7U6U5XU4U3U2XU1,

• |110〉 =⇒ α7I = U7XU6XU5U4XU3XU2U1

• |111〉 =⇒ α8X = U7XU6XU5XU4XU3XU2XU1.

As a consequence of this we have that,

I = U7U6U5XU4XU
†
4XU4XU3U2U1 =⇒ U4 = XU4XU

†
4XU4X

=⇒ XU4X = U4XU
†
4XU4

This is equality up to a global phase, and since that is a congruence relation this is well
defined. Similarly, we have

I = U7XU6XU5U4XU
†
4XU4U3XU2U1 =⇒ U7XU6XU5XU4XU3XU2XU1 = X,

since I and X are not equal up to a global phase we have a contradiction.

This proof is not replicable when we consider RTOF since equality up to a relative
phase is not a congruence relation, whereas equivalence up to a global phase is a congruence
relation. We have been working our way around that by making use of two lemmas, the
proof of which are included in the Appendix.

Lemma 4. Let D1 and D2 be special unitary diagonals and U a unitary matrix such that
D1 = UD2U

†, all 2× 2. Then one of the following must be true,

1. U is diagonal and D1 = D2,

2. U is anti-diagonal and D1 = D†2,

3. D1 = D2 = ±I.
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Lemma 5. Let D be a special unitary diagonal, U a unitary, and A a special unitary
anti-diagonal. If A = UDU † then D = ±iZ.

Furthermore, we also have some numerical evidence supporting these assumptions. We
have written an exhaustive search that generates circuits with those specified CNOT skele-
tons and arbitrary Clifford gates in between. In this search, T gates are added only in
conjugate pairs around CNOT s, which changes the CNOT to another Clifford Operation
controlled-XS. We keep this heuristic to make computations efficient, as multiplying Clif-
ford gates are inexpensive since we can find an explicit finite multiplication table. Indeed,
in all efficient RTOF circuits known, T gates always appear in conjugate pairs around
CNOT s.

Conducting the search on the CNOT structure in assumption 1 and 2 confirms that no
circuit generated this way can implement RTOF 4. Furthermore, if we conduct the search
with a smaller set of gates I,X, Y,X,H, S, no circuit generated this way can implement
RTOF 5 with 8 CNOT s.

Furthermore, we notice that Assumption 3 is in fact the least significant assumption,
since a 3n− const bound could still exist even if assumption 3 does not hold.

3.4 Optimality

The lower bound given by theorem 1 implies that RTOF 4 cannot be implemented in ROM
with less than 6 CNOT s. Since the Mgate uses exactly 6 CNOT s, an easy corollary is
the optimality of the Mgate in ROM. Similarly, by Corollary 1, the Margolus gate is also
optimal in ROM.

One could hope that there might exists a better implementation of RTOF 3 and RTOF 4

in Read-Write memory model, since the ROM restriction is quite stringent. However, sur-
prisingly, the optimality of Margolus gate in Read-Write model is well-known [21], suggesting
that for the purpose of constructing RTOFn, ROM and R-W could be equivalent. To add
on to Song’s result, we show a proof (in Appendix) that the Mgate is in fact optimal in
both computational models as well.

Theorem 4. 6 CNOT s are required to implement any Relative Phase Toffoli-4

The optimality of RTOF 4 in general computational models is a significant result since
the current best known implementations of TOFn given access to unlimited ancilla [15]
use RTOF 4 as a basic building block. Theorem 4 suggests that the construction given by
Maslov is likely to be CNOT -optimal; or at least there’s no obvious ways to improve with
similar constructions.
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Chapter 4

Upper bounds and Constructions

In this Chapter, we will begin by giving a construction of RTOFn. When one clean ancilla
is available, we will also give a construction of TOFn with the aforementioned RTOFn.
These constructions, although asymptotically inefficient, give rise to a family of circuits
implementing TOFn more efficiently than current best known constructions for various
small n. These improvements are shown in the table at the end.

Specifically, our construction of RTOFn in ROM without ancilla will have the following
properties:

Theorem 5. There is a construction of RTOFn in ROM without ancilla. Let c(n) be the
number of CNOT s used in this construction, m = blog3 n−1c, and r = (n−1)−3m. Then:

c(n) =


(n− 1)log3 6 r = 0

6m + (r)2m+1 0 < r ≤ 3m

(3r)2m r > 3m.

Theorem 6. In the same construction of RTOFn, let t(n) be the number of T gates used,
m = blog3 n− 1c, and r = (n− 1)− 3m. Then, t(n) ≤ 8

5(6m − 1) + r2m+2.

Using this construction, when one ancilla is available, we also have the following two con-
structions of TOFn:

Proposition 9. When one clean ancilla is available, there exists a construction of TOFn

that uses at most 2(c(dn3 e+ 1) + 16
3 n− 12 CNOT gates and at most 2(t(dn3 e+ 1) + 16

3 n− 8
T gates.

Proposition 10. When one dirty ancilla is available, there exists a construction of TOFn

that uses at most 2c(n− 1) + 8 CNOT gates and at most 2t(n− 1) + 6 T gates.

4.1 Constructing RTOF n

Before beginning describing the construction, we will first show some helpful lemmas:

Lemma 6. In Read-Only Memory Model, if there is a RTOFn with control qubits q1, ..., qn
and target qubit y, then one can obtain a RTOFn+1 with control qubits q0, ..., qn and target
qubit y by replacing each CX(q1,y) with CCX(q0,q1,y) or CCiX(q0,q1,y) (The circuit construc-
tion of CCiX can be found in Figure 2.2)
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Proof. In the case we replace all the CX(q1;y) with CCX(q0,q1;y), note that each occurrence
of q1 in the original circuit can be treated as q0q1 in the modified circuit. When any of the
CX(q1,y) is replaced with CCiX(q0,q1;y), each occurrence of q0q1 is either q0q1 or iq0q1, one
can factor out the phase i to merge with the overall relative phase.1

We divide the following lemma in three steps as a procedure to obtain RTOF 5, RTOF 6

and RTOF 7.

Lemma 7. Consider a RTOF 4 in a 7-qubit network (pictured on the left side of Figure 4.1).

Step 1: One can replace all the CX(q2;y) with Mar(q1,q2;y) (Margolus Gate with control
q1, q2 and target y) to obtain a RTOF 5 (as in Figure 4.1)

|q1〉 • •
|q2〉 • • • •
|q3〉
|q4〉 • • → • •
|q5〉
|q6〉 • • • •

|y〉 Mar Mar

Figure 4.1: Extending RTOF 4 to RTOF 5 (Note that for simplicity, this and the following figures
omit 1 qubit gates and only show the CNOT structure

Step 2: One can furthermore replace all the CX(q4;y) in the circuit for RTOF 5 with
Mar(q3,q4;y) to obtain a RTOF 6 (as in Figure 4.2)

|q1〉 • • • •
|q2〉 • • • •
|q3〉 • •
|q4〉 • • → • •
|q5〉
|q6〉 • • • •

|y〉 Mar Mar Mar Mar Mar Mar

Figure 4.2: Extending RTOF 5 to RTOF 6

Step 3: One can finally replace all the CX(q6;y) with Mar(q5,q6;y) to obtain a RTOF 7 (as in
Figure 4.3)

1The original theorem and proof was first proposed by Maslov (2021)2. For completeness, we
also present a proof here.
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|q1〉 • • • •
|q2〉 • • • •
|q3〉 • • • •
|q4〉 • • → • •
|q5〉 • •
|q6〉 • • • •

|y〉 Mar Mar Mar Mar Mar Mar Mar Mar Mar Mar

Figure 4.3: Extending RTOF 6 to RTOF 7

Proof. For simplicity, we denote qi as i. Since we are working in ROM, all the single qubit
unitaries in the circuit operate on the target qubit y. We denote Uy as U for single qubit
unitaries in the circuit
We deal with Step 1 first. We would argue that the circuit implements an identity on
(q4, q6; y) up to a relative phase if and only if |q1q2〉 = |00〉, |01〉, |10〉 and implements a
RTOF 3 with control q5, q6 and target y if and only if |q1q1〉 = |11〉

We denote the orginal circuit by QCX(2;y)SCX(2;y)P . Q,S, P are unitaries acting on
qubits 4, 6, and y. Then after the replacement of all the CX(2;y) with Mar(1,2;y), our circuit
becomes QMar(1,2;y)SMar(1,2;y)P
Case 1: When |q1q1〉 = |00〉, |01〉, we have QMar(1,2;y)SMar(1,2;y)P functions as QISIP .
Note that since QCX(2;y)SCX(2;y)P is a circuit implementation of RTOF 4, we have QISIP
functions as a Relative Phase of identity.
Case 2: When |q1q2〉 = |10〉, we have Mar(1,2;y)SMar(1,2;y) functions as ZSZ. We ex-
pand S as the actual gates TCX(4;y)T †. An easy calculation shows that ZTCX(4;y)T †Z =
TCX(4;y)T † when q4 = |0〉 and ZTCX(4;y)T †Z = −TCX(4;y)T † when q4 = |1〉. Hence, we
have Mar(1,2;y)S(4,5,6,7)Mar(1,2;y) functions as IS(4,5,6,y)I when q5 = |0〉 and
Mar(1,2;y)S(4,5,6,y)Mar(1,2;y) functions as −IS(4,5,6,y)I when q4 = |1〉. Note that since
QCX(2;y)SCX(2;y)P is a circuit implementation of RTOF 4, we have both QISIP and
−QISIP function as a Relative Phase of identity.
Case 3: When |q3q4〉 = |11〉, we have Mar(1,2;y)SMar(1,2;y) functions as XSX.
Again, since QCX(2;y)SCX(2;y)P is a circuit implementation of RTOF 4, we have QXSXP
a circuit implementation of RTOF 3.

Hence, by replacing all the CX(2;y) with Mar(1,2;y), our circuit implements an identity
up to relative phase when |q1q2〉 = |00〉, |01〉, |10〉 and a Toffoli-3 up to a relative phase
when |q1q2〉 = |11〉.These implies that our circuit implements a RTOF 5 with control qubits
1, 2, 4, 6 and target qubit y

Step 2 and Step 3 uses a similar argument, so we leave readers to check them.

Corollary 3. Lemma 7 gives an implementation of a RTOF 5 which uses 10 CNOT s, and
a RTOF 6 which uses 14 CNOT s, and a RTOF 7 which uses 18 CNOT s

25



Now we move on to prove theorem 5:

Theorem 5. There is a construction of RTOFn in ROM without ancilla. Let c(n) be the
number of CNOT s used in this construction, m = blog3 n−1c, and r = (n−1)−3m. Then:

c(n) =


(n− 1)log3 6 r = 0

6m + (r)2m+1 0 < r ≤ 3m

(3r)2m r > 3m.

Proof. In the circuit implementation of MGate, we insert markers m1,0,m1,1, ...,m1,6 right
before and after each CNOT (as in Figure 4.4). We would use the circuit structures between
each pair of markers as invariants for induction.

|q1〉 • •
|q2〉 • •
|q3〉 • •
|y〉

↑ ↑ ↑ ↑ ↑ ↑ ↑
m1,0m1,1m1,2m1,3m1,4m1,5m1,6

Figure 4.4: Mgate with markers between CNOT s

Step 1: We prove that the statement holds for RTOFn with 4 ≤ n ≤ 10, and we
furthermore show that in the circuit implementation of Relative Phase Toffoli-10, the gates
between each adjacent pairs of markers implement an MGate exactly.

RTOF 4: Consider the MGate, it uses 6 CNOT s, and c(4) = 6. Note that each qubit
has load 2.

RTOF 5: Apply Lemma 7 and Corollary 3, we have a circuit implementation of RTOF 5

which uses 10 CNOT s and 10 = c(5)
RTOF 6: Apply Lemma 7 and Corollary 3, we have a circuit implementation of RTOF 6

which uses 14 CNOT s and 14 = c(6)
RTOF 7: Apply Lemma 7 and Corollary 3, we have a circuit implementation of RTOF 7

which uses 18 CNOT s and 18 = c(7)
RTOF 8: Apply Lemma 6 to replace the two CX with CCiX, we have a circuit imple-

mentation of RTOF 7 which uses 24 CNOT s and 24 = c(8)
RTOF 9: Apply Lemma 6 to replace the two CX with CCiX, we have a circuit imple-

mentation of RTOF 9 which uses 30 CNOT s and 30 = c(9)
RTOF 10: Apply Lemma 6 to replace the two CX with CCiX, we have a circuit imple-

mentation of RTOF 10 which uses 36 CNOT s and 36 = c(10)
Notice that between each markers originally inserted, the gates implement a MGate

exactly. Furthermore, each qubit has load 4.

Step k: We assume that we have a circuit implementation of RTOF 3k+1. Each con-
trol qubit has load factor 2k, and between each markers mk−1,0, ...,mk−1,6k−1 inserted in
Step k − 1, there is a MGate exactly.
To simplify the indices, we consider this RTOF 3k+1 in a 3k+1 + 1-network, and we treat
qubits q3, q6, q9, ..., q3k+1 as the control qubits of the RTOF 3k , y as the target. Now we
insert markers mk,1, ...,mk,6k to each CNOT s in this circuit.
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Step k.r for r = 1
consider all the CX3;y. Since each adjacent pairs of CX3;y can be found between markers
mk−1,2j−1 and mk−1,2j , and we assume that the gates between mk−1,2j−1 and mk−1,2j im-
plement a MGate3,6;y. By Lemma 7, if we replace all the CX3;y with Mar2,3;y, the original
occurrence of x0x1 becomes ±x0x1. This increases the CNOT costs by 2k × 2 = 2k+1.
Hence, we have a valid implementation of RTOF 3k+2 which uss 6k + 2k+1 CNOT s, and
note that c(3k + 1) = 6k + 2k+1 exactly.

Step k.r for 2 ≤ r ≤ 3k

We repeat a similar procedure as Step k.1. Each time, we replace all the CX(3r;y) with
Mar(3r−1,3r;y) as justified by Lemma 7, and this results in an increment of 2k × 2 CNOT s
per step. Hence, it is easy to see that when we finished with Step 3r, we have an imple-
mentation of RTOF 3k+r+1 that uses 6k + r2k+1 CNOT s.

After Step k.3k, we have an implementation of RTOF 2×3k+1 with control qubits
q2, q3, q5, q6, ..., q3k+1−1, q3k and target qubit y. Each control qubits q2, q5, ..., q3k+1−1 has
load factor 2k and each control qubits q3, q6, ..., q3k has load factor 2k+1, and the overall
number of CNOT s used is 3k × 2k + 3k × 2k+1 = 3 × 6k. Note further that between each
markers mk,2j−1 and mk,2j , we have a Margolus Gate

Step k.r for r = 3k + 1
We replace all the CX(2;y) with CCiX(1,2;y) to obtain an implementation of aRTOF 2×3k+2,

justified by Lemma 6. This results in an increment of 3 × 2k CNOT s, so we have an im-
plementation of a RTOF 2×3k+2 that uses 3× 6k + 3× 2k = 3(3k + 1)2k = (3r)2k CNOT s

Step k.r for 3k + 1 ≤ r ≤ 3k+1 − 3k

We replace all the CX(3(r−3k)−1;y) with CCiX(3(r−3k)−2,3(r−3k)−1;y) to obtain an imple-
mentation of a RTOF 3k+1+r, justified by Lemma 6. This results in an increment of 3× 2k

CNOT s, so we have an implementation of a RTOF (3k+1+r) that uses (3(r−1))2k+3×2k =
(3r)2k CNOT s.

After Step k.3k+1−3k, we have a RTOF 3k+1+1 which uses 6k+1 CNOT s. Furthermore, each
qubit has load factor 2k+1, and the gates between markers mk,2j−1 and mk,2j implement a
MGate exactly. Hence, our induction invariant is preserved, and we are done.

Having proved our construction indeed implements RTOFn with c(n) CNOT s, we move
on to analyze the T-count of this circuit and prove theorem 6.

Theorem 6. In the same construction of RTOFn, let t(n) be the number of T gates used,
s = blog3 n− 1c, and r = (n− 1)− 3s. Then,3 t(n) ≤ 8

5(6s − 1) + r2s+2.

Proof. Let n = 3s + r + 1 where s = blog3 n − 1c, and r = (n − 1) − 3s. We can see that
each time we replace a CNOT gate with either a Margolus gate or a CCiX gate, we will
add 4 additional T gates to our circuit. Naively counting the number of T gates introduced
at each step k = 1, 2, ..., s− 1, we obtain a total number of

t(3s + 1) <

s−1∑
k=0

4× 3k + 4× 3k =
8

5
(6s − 1)

3This bound is loose. In fact, the precise bound is t(n) = 38
25 ((n− 1)log3 6− 1) + 2

5 log3 n for when
n = 3s + 1 for some natural number s. The precise bound for general n can be characterized with
an algorithm, which is not included in this report due to its length and ugliness.
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T gates before we start step s. In the remaining steps s.1, ..., s.r, we notice that each time
we “split” a qubit, we replace 2s CNOT gates with either a Margolus gate or a CCiX gate,
which adds 4 T gate per replacement. Thus, we have the desired upper bound

t(n) <
8

5
(6s − 1) + 4r × 2s =

8

5
(6s − 1) + r × 2s+2.

We will sketch the proof for the precise bound. We can notice that some T gates do
cancel out. Namely, we can notice that the second CNOT in the MGate follows two single
qubit gates T †H. Once we replace this CNOT with either Margolus or CCiX, the left most
two single qubit unitaries of the replacement is always HT , in which case a cancellation
happens and our T-count is reduced by 2. We only add CNOT s of this form when replacing
a CNOT with CCiX, and once added cancellations will continue to happen for all subsequent
replacements of this CNOT . With careful tracking of the amount of such CNOT s added
each step and the cancellations in subsequent steps, we can derive the total number of
cancellations to be

s−1∑
k=0

2× 6k × (s− k − 1) =
2

25
(6s − 5n− 1).

Subtracting these T gates from the total numbers of T gates added gives the desired bound.

4.2 Constructing TOF n with One Ancilla

We will now proceed to prove the claimed construction in proposition 9 and proposition 10.

Proposition 9. When one clean ancilla is available, there exists a construction of TOFn

that uses at most 2(c(dn3 e+ 1) + 16
3 n− 12 CNOT gates and at most 2(t(dn3 e+ 1) + 16

3 n− 8
T gates.

Proof. First, we give a circuit that implements TOFn with 32
3 n+O(1) CNOT gates or T

gates:

|q1〉 · · · |qk〉 / • •

|0〉 •

|qk+1〉 · · · |qn−1〉 / •

|y〉

We notice that while implementing the two TOF k+1 gates, we can borrow the qubits
|qk+1〉 · · · |qn−1〉 as dirty ancillary qubits. Since the computation done on the dirty ancil-
lae is eventually uncomputed, this does not interfere with the functionality of the middle
TOFn−k+1. Similarly, we can use qubits |q1〉 · · · |qk〉 as dirty ancillae when computing
TOFn−k+1.

When there are dn−32 e dirty ancillae available, TOFn gate can be implemented with
8n− 20 CNOT s and 8n− 16 T gates, as in proposition 11 [15]. It’s easy to see that when
choosing k = dn3 e, all Toffoli gates in the above construction have the required ancillae, thus
the above construction uses at most 32

3 n− 28 CNOT gates and at most 32
3 n− 16 T gates.

Furthermore, we can see that the first and third TOF k+1 can in fact be substituted
with two RTOF k+1 and (RTOF k+1)†,[15] the circuit complexity of which is bounded by
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theorem 5 and 6. The relative phase introduced commutes through the middle Toffoli gate
and eventually cancels each other out, keeping the controls unchanged. Then,

cost(TOFn) = 2× cost(RTOF k+1) + cost(TOFn−k+1).

Choosing the same k = dn3 e, we have our claimed costs.

Proposition 10. When one dirty ancilla is available, there exists a construction of TOFn

that uses at most 2c(n− 1) + 8 CNOT gates and at most 2t(n− 1) + 6 T gates.

Proof. Clearly, the below construction implements TOFn:

|q1〉 · · · |qn−2〉 / • •

|0〉 • •

|qn−1〉 • •

|y〉

Now, replacing the top two TOFn−1 with our construction of RTOFn−1, and the bottom
two TOF 3 with the CCiX gate gives the desired bound.

We present a few current best known upper bounds to compare with our construction.

Proposition 11. (Maslov, 2016) When bn−32 c dirty ancilla is available, TOFn can be
implemented with 8n− 20 CNOT gates for n ≥ 5.

Proposition 12. (Maslov, 2016) When one clean ancilla is available, TOFn can be im-
plemented with 12n − 30 CNOT gates and 12n − 24 T -gates. When one dirty ancilla is
available, TOFn can be implemented with 16n− 40 CNOT gates and 16n− 32 T -gates.

Although asymptotically inefficient comparing proposition 10, the CNOT -cost and T -
cost of our construction comes with a small leading coefficient, and thus gives practical
improvements when n is small. To quantify these improvements, we record the CNOT -cost
and T -cost of our TOFn when different types of ancilla is available, and compare the cost
to current best known constructions in the following tables. To avoid repetetion, the first
line of each cell records cost of current best known constructions, whereas the second line
of each cell records the cost our constructions. Furthermore, the lower cost is bolded.

# CNOT # Ancilla Ancilla Type
28 2 |xx〉

TOF 6 28 1 |x〉
36 2 |xx〉

TOF 7 36 1 |x〉
44 3 |xxx〉

TOF 8 44 1 |x〉

Table 4.1: When n ≤ 8, our construction uses the same amount of CNOT gates with less ancilla.
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Ancilla Clean Ancilla Dirty Ancilla
#Gates #CNOT #T #CNOT #T

66 72 88 96
TOF 8 40 48 44 66

78 84 104 112
TOF 9 48 56 56 82

90 96 120 128
TOF 10 56 68 68 98

102 108 136 144
TOF 11 64 76 80 114

138 144 184 192
TOF 14 88 108 128 186

Table 4.2: When 8 ≤ n ≤ 14, our construction uses less CNOT gates and T gates when one ancilla
of either type is available.

Ancilla Clean Ancilla Dirty Ancilla
#Gates #CNOT #T #CNOT #T

150 156 200 208
TOF 15 96 116 144 214

210 216 280 288
TOF 20 140 172 224 374

294 300 392 400
TOF 27 204 244 392 698

330 336 440 448
TOF 30 236 284 472 710

450 456 600 608
TOF 40 348 440 792 1206

546 552 728 736
TOF 48 428 552 1048 1706

570 576 760 786
TOF 50 452 592 1112 1834

930 936 1240 1248
TOF 80 844 1072 2456 3754

1158 1164 1544 1552
TOF 99 1140 1464 3624 5483

1170 1176 1560 1568
TOF 100 1172 1512 3688 5578

Table 4.3: When one clean ancilla is available, our construction uses less CNOT gates for n < 100
and less T gates for n < 48. When one dirty ancilla is available, our construction uses less CNOT
gates for n < 27 and less T gates for n < 15. Our construction is inefficient for n ≥ 100.
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Chapter 5

Conclusion and Future Works

This report lays out several foundations for the study of the costs of Relative Phase Toffoli
Gates. We characterize costs in terms of the number of CNOT gates used in the circuit and
are able to derive lower bounds and upper bounds for the costs of Relative Phase Toffoli
Gates. Specifically, we are able to prove a 3

2n− 1 lower bound on CNOT costs of RTOFn

in R-W model and a 2n−2 lower bound on CNOT costs of RTOFn in ROM model. In the
meantime, we are also able to prove the optimality of RTOF 4 in R-W Memory. This implies
that the 3

2n−1 lower bound could be further improved. We also present some partial results
that could lead to 3n+ Constant lower bound on the CNOT -cost of RTOFn. Furthermore,
one could also categorize the Relative Phase Toffoli Gates by the degree of freedoms they
have in their relative phases. These partial results give a full proof of a 3n+ constant lower
bound for a class of Relative Phase Toffoli-n Gates where the relative phases have 2n−1

degrees of freedom. With these partial result, it is promising to extend this lower bound to
general Relative Phase Toffoli-n Gates.

We are also able to derive an upper bound of (n − 1)log3 6 on CNOT costs of RTOFn

with explicit constructions. This construction of RTOFn could be directly used to imple-
ment TOFn. Although asymptotically inefficient compared to known linear bounds, our
constructions outperform current best-known implementations of TOFn in terms of CNOT
cost, T cost, and ancilla count. With 1 clean ancilla, our construction offers improvements
in terms of CNOT Costs when n < 100, and in terms of T Costs when n < 48. These
practical improvements are significant in the context of near-term quantum computer hard-
ware, where high fidelity qubits and fault-tolerant CNOT gates and T gates are difficult to
realize. In the meantime, current best-known upper bounds on CNOT costs for Relative
Phase Toffoli Gates are asymptotically the same as those for Toffoli Gates. However, given
the additional degrees of freedom, and the fact that one could construct a TOFn using two
RTOFn and 1 additional CNOT with 1 ancilla, one would hope that there is a construction
for RTOFn that has linearly less CNOT costs than TOFn.

Another implication of our result is the potential equivalence of ROM and R-W for
RTOFn, which is manifested when n is small. It was previously known that 3 CNOT s
are required to implement a RTOFn in both R-W and ROM. Interestingly, the well-known
optimal implementation of RTOF 3, the Margolus gate, is in ROM. Furthermore, current
best known implementation of RTOF 4 is also in ROM and uses 6 CNOT s. We are able to
prove that 6 CNOT s are required even if in R-W Memory. The optimality of RTOF 4 is an
interesting result in its own right since RTOF 4 is used as a basic building block in current
best known implementations of Toffoli gates; however, it also suggests that the ability to
implement optimal RTOF in ROM might not be a small circuit coincidence.
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Chapter 6

Appendix

6.1 Lemmas for Lower Bounds

Lemma 2. Let D be a diagonal matrix and U a unitary 2×2 matrix. Then if X = UDU †,
where X is the Pauli-X gate, then U = HZ up to a global phase.

Proof. We shall first show this is true for special unitary matrices. We know that D =
(
α 0
0 β

)
for α, β ∈ C. Since U is special we know there exists x, y ∈ C with |x|2 + |y|2 = 1 such that
U =

( x y
−y x

)
. Putting it altogether we get the following equation,

(
0 1
1 0

)
=

(
x y
−y x

)(
α 0
0 β

)(
x −y
y x

)
=

(
α|x|2 + β|y|2 −αxy + βxy
−αxy + βxy β|x|2 + α|y|2

)
.

Which gives us the following system of equations,

1. 0 = α|x|2 + β|y|2

2. 1 = −αxy + βxy

3. 1 = −αxy + βxy

4. 0 = β|x|2 + α|y|2.

We know that neither α nor β are zero, as otherwise it wouldn’t be invertible, so equations
(1) and (4) tells us,

−α
β

=
|y|2

|x|2
and

−β
α

=
|y|2

|x|2
=⇒ −α = β and |x| = |y|.

From equations (2) and (3) we now have 2xy = 1
β and 2xy = 1

β , hence β and α are real.

Since D must also be unitary we can assume D = Z. Then xy = −1
2 . Since |x|2 + |y|2 = 1

and |x| = |y|, then |x| = 1√
2

and thus y = −x. So there exists θ ∈ [0, 2π) such that

x = 1√
2
eiθ and y = − 1√

2
e−iθ. Hence,

U =
1√
2

(
eiθ −e−iθ
eiθ e−iθ

)
and U † =

1√
2

(
e−iθ e−iθ

−eiθ eiθ

)
,

so

X = UZU † =
1

2

(
eiθ −e−iθ
eiθ e−iθ

)(
1 0
0 −1

)(
e−iθ e−iθ

−eiθ eiθ

)
=

1

2

(
0 1 + e2iθ

1 + e2iθ 0

)
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Hence, 1 + e2iθ = 2 and thus θ = 0 or π but we shall just choose θ = 0 as they are the same
up to a global phase. Plugging θ = 0 into our original equations yields,

U =
1√
2

(
1 −1
1 1

)
= HZ.

With the special case proven, now suppose U is a general unitary. Then U = γV , where V
is a special unitary and γ ∈ C is a unit vector. Then

X = UDU † = (γV )D(γV )† = γγV DV † = V DV †.

By what we have previously shown, U = γHZ, which is merely a global phase of HZ.

Lemma 3. Suppose (∗) is a n-qubit ROM circuit with m CNOT s on the target qubit and
the only other gates are single qubit unitaries acting on the target qubit. We denote the
unitary before the first CNOT as U1 and the unitary after the first CNOT as U2 and so
on until Um+1 after the final CNOT . Two additional assumptions are required.

1. There exists a qubit qk with only one related CNOT .

2. There exists a second qubit ql such that either to the left or to the right of the qk, ql is
the control bit of a CNOT gate acting on the target bit and is the only such CNOT
gate on that wire on that side of the qk CNOT .

Then (∗) cannot implement RTOFn.

Proof. Assume (∗) satisfies all of the hypothesis of the theorem and implements RTOFn.
Also assume that the CNOT controlled by qk is in between Ui and U . We will first fix the
first n − 1 wires with 4 different potential inputs and derive some relations amongst the
matrices. Then if we run |0〉n−1 into the first n − 1 wires, then we know that the target
wire would become a relative phase of the identity, i.e.

D0 = Um+1 · · ·U1, where D0 is a unitary diagonal.

Now fix the first n− 1 wires with |k〉 which is 0 on all qubits except for the kth entry where
it is 1. As last time, we know the target wire is still a relative phase of the identity so we
get,

D1 = Um+1 · · ·Ui+1XUi · · ·U1, where D1 is a unitary diagonal.

Assume that the CNOT corresponding to the qubit ql is in between Uj and Uj+1 with
j > i (the case for j < i is nearly identical). Then fix the first n− 1 wires with |l〉, defined
similarly to |k〉, and we get by the same reasoning as above,

D2 = Um+1 · · ·Uj+1XUj · · ·Ui+1UiU,

where D2 is a unitary diagonal and U is just some unitary. Now fix |j ⊕ k〉 and we get,

D3 = Um+1 · · ·Uj+1XUj · · ·Ui+1XUiU,

where D3 is a unitary diagonal and U is the same as above. Since the product of diagonals
is again a diagonal and the transpose of a diagonal is again a diagonal, both D†1D0 and

D†3D2 are both unitary diagonals. By explicit calculation, we have
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D4 = D0D
†
1 = (Um+1 · · ·U1)(Um+1 · · ·Ui+1XUi · · ·U1)

† = (Um+1 . . . Ui+1)X(Um+1 . . . Ui+1)
†,

and

D5 = D2D
†
3 = (Um+1 · · ·Uj+1XUj · · ·Ui+1UiU)(Um+1 · · ·Uj+1XUj · · ·Ui+1XUiU)†

= (Um+1 . . . Uj+1XUj . . . Ui+1)X(Um+1 . . . Uj+1XUj . . . Ui+1)
†

Letting V1 = Um+1 . . . Ui+1 and V2 = Um+1 . . . Uj+1XUj . . . Ui+1, and observing that X =

V ∗1 D4V1 and X = V †2D5V1, we can apply lemma 2.1 and see that V1 = V2, i.e.

Um+1 . . . Ui+1 = Um+1 . . . Uj+1XUj . . . Ui+1 =⇒ X = I.

Some global phases are presumed throughout but since they are a congruence relation
they are ignored. So we have derived our contradiction, and thus (∗) does not implement
ROTFn.

Lemma 4. Let D1 and D2 be special unitary diagonals and U a unitary matrix such that
D1 = UD2U

†, all 2× 2. Then one of the following must be true,

1. U is diagonal and D1 = D2,

2. U is anti-diagonal and D1 = D†2,

3. D1 = D2 = ±I.

Proof. We shall first assume U is a special unitary which permits us to assign D1 = [α, 0],
D2 = [β, 0], U = [x, y]. Then we have the following equation,

[α, 0] = [x, y][β, 0][x,−y]

= [βx, yβ][x,−y]

= [β|x|2 + β|y|2,−βxy + βxy].

(6.1)

Hence, 0 = −βxy + βxy =⇒ βxy = βxy. From this we know that if both x and y are
nonzero then β = ±1, so D1 = D2 = ±I and we attain option 3. Suppose y = 0, then
α = β|x|2 + β|y|2 =⇒ α = β|x|2 =⇒ α = β, hence D1 = D2. Suppose x = 0, then α = β

and D1 = D†2.
Now suppose U is not special. Then U = δV where δ is a complex number of unit length
and V is a special unitary. Then D1 = UD2U

† = (δV )D2δV
† = V D2V

†, and we may apply
our previous result since V is special.

Lemma 5. Let D be a special unitary diagonal, U a unitary, and A a special unitary
anti-diagonal. If A = UDU † then D = ±iZ.

Proof. Since trace is preserved under conjugation we know that tr(A) = tr(D) so tr(D) = 0
since A is anti-diagonal. Letting D = [x, 0], we can see that x+x = 0 and hence x is purely
imaginary and of norm one, hence x = ±i and D = ±iZ.
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6.2 Optimality of MGate

Theorem 4. 6 CNOTs are required to implement any Relative Phase Toffoli-4

To aid us in our proof, we can make the following observations:

Observation 3. CZi;j = CZj;i

Hence, we do not distinguish the control and target and just write CZi,j from now.

Observation 4.

X • • X

=

• • Z

This is found in [18], this equation allows us to push a X gate through CZ with the cost
of introducing another Z gate

Observation 5. Let Q be a unitary matrix and let |Q|CX be the minimum CX gates
required to implement Q and |Q|CZ be the minimum CZ gates required to implement Q,
then |Q|CX = |Q|CZ .

This observation was orginally proposed in [18], it follows from Observation 1

Theorem 7 (Markov& Shende, 2008). Suppose A,B are single qubit unitaries and P com-
mutes with Z l and the following circuit composed of A,B, P implements Q that commutes
with Z l, then at least one of the two conditions is true:

1. A, B are both diagonal or both anti-diagonal.

2. P takes the form D ⊗ P0 for some one qubit diagonal D

l A
P

B =
Q

/

Corollary 4. Let L be a circuit that implements a RTOFn. If there is a control qubit l
that has load factor 1, then we can assume that all the single qubit unitaries acting on l are
diagonals.

Proof. By assumption, circuit L takes the form

l A • B

m
R

•
S

/

Take P as

l •

m
R

•
S

/
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Note that P commutes with Z l and by our assumption L implements a RTOFn with l
being one of the control qubit, if we denote this RTOFn by Q, then Q also commutes
with Z l. Hence, we are in the position to apply Theorem 7. All we need to show is that
situation 2 can not happen in this case. Assume for contradiction that P takes the form

D⊗P0 for some one qubit diagonal

(
d0 0
0 d1

)
, if we move R,S to P ’s side, then the matrix

(I ⊗ S†)(D ⊗ P0)(I ⊗ R†) = D ⊗ (S†P0R
†) represents CZ l,m, which is a contradiction.

Hence, only situation 1 in Theorem 7 can happen, we can conclude that A,B are either
both diagonals or anti-diagonals. Furthermore, by observation 4, one can push an X gate
through the first qubit to force A,B to be diagonal matrices, so we are done.

Theorem 8 (Markov& Shende, 2008). Suppose Q commutes with Z l and let L be a CZ l−
circuit computing Q in which exactly two CZ’s are incident on l, say CZ l,m and CZ l,n.
Then all non-diagonal one-qubit gates may be eliminated from qubit l at the cost of possibly
(i) replacing CZ(l, n) with CZ(l,m) and (ii) adding one-qubit gates on qubits m,n

Corollary 5. Suppose the following circuit in Figure 6.1 implements a RTOFn, then this
circuit is either equal to (a) or (b) in Figure 6.2 where D is a single qubit diagonal gate.

l r • s • t

m
R

•
S T

n •

Figure 6.1: A circuit that implements a RTOFn

l D • •

m
R

•
S T

n •

(a)

l Rz(α) • •

m
R

Rz(β)H • HRz(γ)H • H
S T

n

(b)

Figure 6.2: Two possible circuit structures that Figure 6.1 could be reduced to

Proof. This is an easy corollary from Theorem 8
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We assume that the circuits only contains single qubit unitaries and CZ gates. When
we have a circuit diagram with only CZ showing up, we mean that we assume the single
qubit unitaries between the CZ could be any untiary 2× 2 matrices.

Definition 28. Let P commutes with Z l, then P = |0〉〈0| ⊗P0 + |1〉〈1| ⊗P1 if l is the most

significant qubit. We define E(P ) to be the multi-set of eigenvalues of P †1P0.

Definition 29. Define |P |CZ;l to be the minimum number of CZ gates incident on l in any
circuit for P in which the only entangling gates incident to P are CZ’s.

Theorem 9 (Markov &Shende, 2008). Let P commutes with Z l, then

• |P |CZ;l = 0 iff E(P ) = λ{1, 1, ....} for some λ ∈ C

• |P |CZ;l = 1 iff E(P ) = β{1,−1, 1,−1, ....} for some β ∈ C

• |P |CZ;l ≤ 2 iff E(P ) is a set of unit norm complex numbers which come in conjugate
pairs up to a global phase.

Lemma 8. The only circuits (up to permutation of the control qubits and taking inverses
of circuits) that are not piece-wise separable with 3 CZ’s in a 3-qubit network are the three
circuits in Figure 6.3

•
• •
• • •

(a)

•
• • •
• •

(b)

• •
• • •
•

(c)

Figure 6.3: Possible CZ structures to implement RTOF 3

Proof. By applying Theorem 1 and Corollary 5, it is easy to check only the above three
circuits (up to permutations and inverses) are not piece-wise separable.

Lemma 9. The CZ structures (b) and (c) in Figure 6.3 could not implement a RTOF 3.

Proof. We will first prove that (b) in Figure 6.3 does not implement a Relative Phase
Toffoli-3

Assume for contradiction that (b) could implement Relative Phase Toffoli-3. According
to Corollary 4, we could assume that the single qubit unitaries acting on q0 are diagonals.
Note that if we assume the matrix that circuit (b) represents as U , U can be written as
〈0||0〉U0 + 〈1||1〉U1. We now denote the single qubit unitaries in the circuit by D1, D2 which
are diagonals, and A1, A2, A3, A4, and B1, B2, B3, as in figure 6.4

We consider what the circuit in Figure 6.4 reduces to if we remove q0 = |0〉 and q0 = |1〉.
These are illustrated in Figure 6.5

Hence,

|q1〉 A1 • A2 Z A†2 • A†1

= U †1U0

|q2〉 B1 • I • B†1
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|q0〉 D1 • D2

|q1〉 A1 • A2 • A3 • A3

|q2〉 B1 • B2 • B3

Figure 6.4: The CZ structure in Figure 6.3 with the presence of single qubit unitaries

|q1〉 A1 • A2 I A3 • A3

|q2〉 B1 • B2 • B3

(a) circuit C0 up to a global phase obtained from removing |q0〉 = |0〉

|q1〉 A1 • A2 Z A3 • A3

|q2〉 B1 • B2 • B3

(b) circuit C1 up to a global phase obtained from removing |q1〉 = |1〉

|q1〉 A1 • A2 Z A†2 • A†1

|q2〉 B1 • I • B†1

(c) Circuit C0C−1
1 up to a global phase

Figure 6.5

with a global phase
By Theorem 9, the eigenvalues of U †1U0 are {1,−1, 1,−1} up to a constant factor with

norm 1
This implies that U †1U0 has the following representation

eiθ


1
−1

0 b
c 0


where |eiθ| = 1 and bc = 1, we denote Z =

(
1 0
0 −1

)
and Xb =

(
0 b
c 0

)
, and assume

without loss of generality that A1, A2, B1 ∈ SU(2), so denote A1 =

(
α1 −β1
β1 α1

)
and
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A2 =

(
α2 −β2
β2 α2

)
then one can check that we have

(
(|α2|2 − |β2|2)I (−2αβ2)I

(−2α2β2)I (|β2|2 − |α2|2)I

)
=eiθ

(
B1(|α1|2Z + |β1|2Xb)B

†
1 α1β1B1(Z −Xb)B

†
1Z

α1β1ZB1(Z −Xb)B
†
1 ZB1(|β1|2Z + |α1|2Xb)B

†
1Z

)
so (|α2|2 − |β2|2)I = eiθB1(|α1|2Z + |β1|2Xb)B

†
1, which is a contradiction.

We now go on to disprove the other structure, structure (c) in Figure 6.3. Assume for
contradiction, that (c) would implement a Relative Phase Toffoli-3, then by Corollary 5, we
have the circuit either equal to (a) or (b) in Figure 6.6 (the single qubit unitaries on |q0〉 in
both circuits (a) and (b) in Figure 6.6 are diagonal gates.)

|q0〉 • •
|q1〉 • • •
|q2〉 •

(a)

|q0〉 • •
|q1〉 • • •
|q2〉 •

(b)

Figure 6.6: Two possible CZ structures (c) in 6.3 reduces to

Obviously, (b) is piece-wise separable, which is a contradiction, we are left with (a).
Similarly, we assume that the circuit in (a) of Figure 6.6 computes U , then U can be written
as |0〉〈0|U0+|1〉〈1|U1. We now denote the single qubit unitaries in the circuit in (a) of Figure
6.6 by D(a diagonal matrix), and A1, A2, A3, A4, and B1, B2, B3, as in figure XXX

|q0〉 D • •

|q1〉 A1 • A2 • A3 • A4

|q2〉 B1 • B2

Figure 6.7: The CZ structure in (a) of Figure 6.6 with the presence of single qubit unitaries

By the result of Theorem 9, U †1U0 is of the form the eigenvalues of U †1U0 are {a, a, b, b}
up to a constant factor with norm 1
This implies that U †1U0 can be written as

eiθ


a

a
0 c
d 0


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where |eiθ| = 1 and cd = −1, we denote Ia =

(
a 0
0 a

)
and Xc =

(
0 c
d 0

)
, and as-

sume without loss of generality that A1, A2, B1 ∈ SU(2), so denote A1 =

(
α1 −β1
β1 α1

)
and A2 =

(
α2 −β2
β2 α2

)
. Furthermore, note that A†3ZA3 = (−i)A†3(iZ)A3. Note that

A†3(iZ)A3 ∈ SU(2), so we denote A†3(iZ)A3 =

(
α3 −β3
β3 α3

)
Note that A2ZA1 =

(
α1α2 + β1β2 α1β2 − α2β1
α1β2 − α2β1 −α1α2 − β1β2

)
if we let x0 = α1α2 +β1β2 and y0 = α1β2−α2β1, then we can write A2ZA1 as

(
x0 y0
y0 −x0

)
we denote A†1A

†
2 as

(
x1 −y1
y1 x1

)
then one can see that

|q1〉 A1 I A2 • A3 I A4

|q2〉 B1 • B2

(a) circuit C0 up to a global phase obtained from removing |q0〉 = |0〉

|q1〉 A1 Z A2 • A3 Z A4

|q2〉 B1 • B2

(b) circuit C1 up to a global phase obtained from removing |q1〉 = |1〉

|q1〉 A1 A2 • A3 Z A†3 • A†2 Z A†1

|q2〉 B1 • I • B†1

(c) Circuit C0C−1
1 up to a global phase

Figure 6.8
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(A2ZA1 ⊗B1)(U
†
1U0)(A

†
1A
†
2 ⊗B

†
1)

=

(
x0B1 y0B1

y0B1 −x0B1

)(
Ia

Xc

)(
x1B

†
1 −y1B†1

y1B
†
1 x1B

†
1

)

=

(
x0B1Ia y0B1Xc

y0B1Ia −x0B1Xc

)(
x1B

†
1 −y1B†1

y1B
†
1 x1B

†
1

)

=

(
B1(x0x1Ia + y0y1Xc)B

†
1 B1(−x0y1Ia + x1y0Xc)B

†
1

B1(y0x1Ia − x0y1Xc)B
†
1 B1(−y0y1Ia − x0x1Xc)B

†
1

)

Hence, according to circuit diagram (c) in 6.8, we have that(
α3I −β3I
β3I α3I

)
=

(
B1(x0x1Ia + y0y1Xc)B

†
1 ZB1(−x0y1Ia + x1y0Xc)B

†
1

B1(y0x1Ia − x0y1Xc)B
†
1Z ZB1(−y0y1Ia − x0x1Xc)B

†
1Z

)

up to a global phase.
we can see that if α3 6= 0, then both x0x1 and y0y1 have to be 0, which is a contradiction.

Hence, α3 = 0 and x0x1 = y0y1 = 0, this leads to a contradiction in these two equations
−β3I = B1(y0x1Ia − x0y1Xc)B

†
1Z and β3I = B1(y0x1Ia − x0y1Xc)B

†
1Z

Theorem 10. The following circuit is the only valid implementation of a Relative Phase
Toffoli-3 with 3 CZ’s.

•
• •
• • •

Proof. This follows from Lemma 8 and Lemma 9.

Observation 6. Suppose L is a CZ l-circuit computing a Relative Phase Toffoli-n gate in
which exactly two CZ’s are incident on l, say CZ l,m and CZ l,n. Assume the unitaries acting
on the remaining circuits are R,S, T . Then either RZmSZnT or RZmSZnT implements a
Relative Phase Toffoli-n− 1

Proof. By Corollary5, there are two circuits that L is equal to. In both cases, we are able
to fix l = |1〉 and look at the remaining circuit as in both cases, there is only a diagonal gate
operating on l. Hence, it is easy to check that either RZmSZnT or RZmSZmT implements
a Relative Phase Toffoli −n− 1.

Observation 7. When there are 5CZ’s in a 4− qubit circuit, there has to be a qubit of
load factor 2.

so to prove Theorem 4, we split into two cases: the case when there is a control qubit
of load factor 2, and the case when the only qubit of load factor 2 is the target qubit.

Lemma 10. When there are less than 5CZ’s in a 4 qubit circuit and there is a control
qubit of load factor 2, the circuit could not implement a Relative Phase Toffoli-4

Proof. Consider an arbitrary 4-qubit circuit with exactly 5 CZ gates and at least one control
qubit of load factor 2 (Without loss of generality, call it q0). Assume for contradiction that
it implements a Relative Phase Toffoli-4. By Corollary 5, we may assume that there are two
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equivalent circuits such that the single qubit unitaries on q0 is a diagonal matrix. Then one
could either argue that the circuit is piece-wise separable or remove q0 to derive an invalid
implementation of Relative Phase Toffoli-3, which are contradictions.
Here is one example of how this argument works. Consider the following circuit, we assume
for contradiction that it could implement a Relative Phase Toffoli-4. Notice that q0 has
load factor 2.

q1 • •
q2 • • •
q0 • •
q3 • • •

Figure 6.9: One example of 5 CZ’s in a 4-qubit network with a control qubit of load factor 2

By Corollary 5, the circuit is either equal to either (a) in or [b]

q1 • •
q2 • • •

q0 D • •

q3 • • •

(a)

q1 • •
q2 • • •

q0 • • D′

q3 • • •

(b)

Figure 6.10: Two CZ structures that the circuit in Figure 6.9 is equivalent to (D and D′ are diagonal
matrices and they are the only single qubit unitaries acting on q0 in (a) and (b) respectively)

Hence, we can remove q0 = |1〉 to derive an implementation of a Relative Phase Toffoli-3,
but in both cases, the CZ structure after removing q0 is

• •
• • •
•

which is not a valid CZ structure for Relative Phase Toffoli-3.

Theorem 11. The circuit in Figure 6.11 can not implement U where U = eiθ


Z

Z
Z

Xb


(Z =

(
1 0
0 −1

)
and Xb =

(
0 a
b 0

)
with ab = 1, eiθ is an arbitrary complex number of mag-

nitude 1)

Proof. By Corollary 5, we may assume the circuit in Figure 6.11 can be reduced to either
(a) or (b) in Figure 6.12

Note that (a) in Figure 6.12 can be reduced to only one diagonal gate D operating on
the first qubit, which obviously can not implement a Relative Phase Toffoli-3. Hence, we
may assume that the circuit can be reduced to (b) in Figure 6.12.
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|q1〉 A1 • A2 Z A†2 • A†1

|q2〉 B1 • B2 • I • B†2 • B†1

|q3〉 C1 • I • C†1

Figure 6.11: Circuit that can not implement a special type RTOF 3 (A1, A2, B1, B2, C1 are arbitrary
single qubit unitaries)

|q1〉 D • •

|q2〉 B1 • B2 • I • B†2 • B†1

|q3〉 C1 • I • C†1

(a) (D is a diagonal gate)

|q1〉 Rz(α) • •

|q2〉 B1 • B2 Rz(β) H • H Rz(γ) H • H B†2 • B†1

|q3〉 C1 • • C†1

(b)

Figure 6.12: The circuits in Figure 6.11 are reduced to

In the circuit in (b) of Figure 6.12, we remove q1 = |0〉 to obtain circuit C0 that computes
U0, which is equal to eiθI ⊗ Z

|q2〉 B1 • B2 Rz(β − γ) B†2 • B†1

= ei(θ−α/2)I ⊗ Z
|q3〉 C1 • • C†1

Hence, (B†2Rz(β − γ)B2)⊗ I = ei(θ−α/2)

(
C1ZC

†
1 0

0 ZC1ZC
†
1Z

)
which is a contradiction since this implies I = Z up to a global phase.

Lemma 11. When there are less than 5CZ’s in a 4 qubit circuit and the only qubit of load
factor 2 is the target qubit, the circuit could not implement a Relative Phase Toffoli-4

Proof. Note that when the only qubit of load factor 2 is the target qubit, then there must
be at least one qubit of load factor 1. A quick inspection using piece-wise separabiltiy of
circuits show that a circuit with two control qubits of load factor 1 could not implement
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•
• • •

• • • •
• •

(a)

•
• • • •
• • •
• •

(b)

•
• • • •
• • •

• •
(c)

•
• • •
• • • •

• •
(d)

•
• • •
• • • •

• •
(e)

Figure 6.13: Possible CZ structures to implement RTOF 4 with 5 CZ’s and only one qubit of load
factor 2, which is the target qubit

Relative Phase Toffoli gates. Hence, we have exactly one qubit of load factor 1 in the circuit.
This leaves us with the CZ structures as represented in Figure ??

For each of the above structures, assume for contradictions that it could implement a
Relative Phase Toffoli-4. Remove q0 = |0〉, call the resulting circuit C0 and the unitary
it implements U0. Then remove q0 = |1〉, call the resulting circuit C1 and the unitary
it implements U1. Consider circuit C0C

−1
1 and circuit C−11 C0. Note that the unitary

C0C
−1
1 implements is U †1U0. By Theorem9, since q0 has load factor 1, we may assume

that U †1U0 = eiθ


Z

Z
Z

Xb

. Similarly, since C−11 C0 implements U0U
†
1 and q0 has

load factor 1, we may also assume that U0U
†
1 = eiθ

′


Z

Z
Z

Xb′

. Notice that if we

exchange the first two most significant qubit in the matrix eiθ


Z

Z
Z

Xb

, we get

the matrix eiθ


Z

Z
Z

X1/b


Hence, we may conclude that both C0C

−1
1 and C−11 C0 and the transposition of the first two
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control qubits implement a unitary eit


Z

Z
Z

Xa

. However, notice that at least

one of C0C
−1
1 , C−11 C0 and the transposition of the first two control qubits has the same

structure as in Figure 6.11, which is a contradiction by Theorem 11.
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