Improving Quantum Circuits of Toffoli Gates RIPS IBM Team

Drew Gao, Xinjie He, James Woodcock Muye "Willers" Yang (Project Manager)

Academic Mentors: Dmitri Maslov (IBM)

Jens Palsberg (UCLA)

Micky Abir (UCLA)

Introduction

Classical vs. Quantum Computing

Classical Computing	Quantum Computing		
 Information stored as bits with a binary value 	 Information stored as qubits in superposition (unit vectors in C²) 		
 Information manipulated by logic gates (which implement boolean functions) 	• Information manipulated by primitive quantum logic gates (which implement unitary matrices ie $U^{\dagger}U = UU^{\dagger} = I$.)		
 Larger functions broken down into 2, or 3 bit logic gates for implementation 	 Larger unitary operations broken down into 1 or 2 qubit quantum logic gates 		

- Analogous to reversible multiple input AND gates
- Commonly used to construct other circuits

Decomposing a Toffoli Gate

• Want to minimize the amount of multiple qubit interactions and small rotations such as T gates which are hard to implement precisely

Current Construction: Relative Phase

• Relative phase toffoli gates have entries with magnitude 1

$$egin{pmatrix} z_1 & 0 & 0 & 0 & 0 & \dots & 0 & 0 \ 0 & z_2 & 0 & 0 & 0 & \dots & 0 & 0 \ 0 & 0 & z_3 & 0 & 0 & \dots & 0 & 0 \ 0 & 0 & 0 & z_4 & 0 & \dots & 0 & 0 \ 0 & 0 & 0 & 0 & z_5 & \dots & 0 & 0 \ dots & do$$

- Use RTOF^{N-1} to construct TOF^N
 - Maslov 2016:

 $\operatorname{Cost}(TOF^N) \leq 2 \times \operatorname{Cost}(RTOF^{N-1}) + 6$ with 1 clean ancilla $\operatorname{Cost}(TOF^N) \leq 2 \times \operatorname{Cost}(RTOF^{N-1}) + 8$ with 1 dirty ancilla

Main Results

Lower Bounds

Previous Works

	TOF ^N	RTOF ^N
ROM	Not possible to implement	Not known
R-W	2N (2008, Shende & Markov)	Not known

Our Results on Lower Bound of RTOF on CNOT Costs

	TOF ^N	RTOF ^N
ROM	Not possible to implement	2N - 2 (N > 3) 3N - 6 (N > 4, for special type RTOF)
R-W	2N (2008, Shende & Markov)	3/2N - 1 (N > 3)

More Results

Corollary 1: Optimality of RTOF⁴ in ROM

Theorem 4 (Our Result): Even in R-W, 6 CNOTs are required to implement $RTOF^4$ (Optimality of $RTOF^4$ in R-W)

Conjectures

Theorem 5: 3N - 6 CNOTs are required to implement a special type of RTOF^N in ROM

Conjecture 1: 3N - 6 CNOTs are required to implement RTOF^N in ROM

Why ROM when you have access to R-W?

- 1. Almost all current known implementations of RTOF^N are in ROM
- 2. These implementations in ROM are also optimal in R-W in terms of CNOT costs by our following theorems:

Theorem 4 (G.Song, 2004): 3 CNOTs are required to implement RTOF³ in R-W

Theorem 5 (Our Result): 6 CNOTs are required to implement RTOF⁴ in R-W

Conjecture 1: In terms of CNOT costs of RTOF^N, ROM and R-W Model have the same computational power.

Upper Bounds

Previous Works on Upper Bound

	TOF ^N	RTOF ^N
No ancilla	Around 300N (Gidney, 2015)	Conjecture: 4N-10 in ROM (Maslov)
1 ancilla	12N (Maslov, 2016)	No good bound
~N/2 ancilla	6N (clean ancilla) 8N (dirty ancilla) (Maslov, 2016)	No good bound

Motivating Construction

Conjecture (Maslov): N-qubit relative phase Toffoli Gates can be implemented with 4N-10 CNOT gates

- Replace CNOTs with Margolus gates on a qubit to incorporate more controls
- Relative Phase introduced commute with unitary gates

Constructing ROTFⁿ with Clifford + T

Theorem 6: Let $n = 3^m + 1$ for some non-negative integer n, there exists a construction of RTOFⁿ with CNOT-cost c(n) and T-cost t(n), where

$$c(n) = (n-1)^{\log_3 6}$$

 $t(n) \leq \frac{8}{5}(n-1)^{\log_3 6}$

Improvement — Fewer Ancilla (04/06)

	# CNOT	# Ancilla	Ancilla Type
	28	2	$ xx\rangle$
TOF^6	28	1	$ x\rangle$
	36	2	$ xx\rangle$
TOF^7	36	1	$ x\rangle$
	44	3	$ xxx\rangle$
TOF^8	44	1	$ x\rangle$

Improvement — Less CNOT and T Cost with 1 ancilla

Ancilla	Clean Ancilla		Dirty Ancill	a
#Gates	#CNOT	#T	#CNOT	#T
	66	72	88	96
TOF^8	40	48	44	66
	78	84	104	112
TOF^9	48	56	56	82
	90	96	120	128
TOF^{10}	56	68	68	98
	102	108	136	144
TOF^{11}	64	76	80	114
69 - 10	138	144	184	192
TOF^{14}	88	108	128	186

Replacing T with fractional CNOT gates

New cost metric: Counting the amount of coupling!

Replacing T with fractional CNOT gates

RTOF³ with Clifford + CrX

Constructing ROTFⁿ with Clifford + CX^r

Theorem 6: Let $n = 3^m + 1$ for some non-negative integer n, there exists a construction of RTOFⁿ with CNOT-cost c(n) and T-cost t(n), where

$$c(n) = (n-1)^{\log_3 6}$$

 $t(n) \leq \frac{8}{5}(n-1)^{\log_3 6}$

We can improve entangling cost by using square-root of CX and CZ, and *eliminate the need for single qubit gates* (including T gates!)

$$e(n) = \frac{2}{3}(n-1)^{\log_3 6}$$
 $t(n) = 0$

Improvements on RTOF construction

Cata Trma	With Cliffo	$rd + C\sqrt{X}$	With Clifford $+T$		
Gate Type	Ent. Cost	# Gates	Ent. Cost	T Cost	
$RTOF^3$	2	4	3	4	
CCiX	3	4	4	4	
$RTOF^4$	4	6	6	8	
$C^3 i X$	5	6	DO NOT F	KNOW	
$RTOF^5$	6	10	10	14	
$RTOF^7$	12	18	18	30	
$RTOF^{10}$	24	36	36	56	

Improvements on TOF construction

True of Coto	With Clifford+ CX^r		With Clifford $+T$			
Type of Gate	Ent. Cost	# Gates	Ancillae	Ent. Cost	T Cost	Ancillae
TOF^3	3.5	5	0	6	4	0
TOF^4	7.75	13	0	15	12	1
TOF^n	4n-C	6.9n-C	$\frac{n}{3}-C$			
TOF^n	4.8n-C	7.2n-C	$\frac{\breve{n}}{5} - C$	6n-C	8n-C	$\frac{n}{2} - C$
TOF^n	6n-C	9n-C	$\frac{\check{n}}{8} - C$			-

Conclusion

- First set of lower bounds on the CNOT cost of Relative Phase Toffoli Gates
 - 2n-2 for RTOF in ROM
 - \circ $\,$ 3n/2-1 for RTOF in R-W $\,$
 - 3n-6 for a special type RTOF in ROM
- First proof for the optimality of a RTOF⁴
- New construction of RTOF^N and TOF^N
 - Practical improvements for CNOT-count, T-count and Ancilla-count for small n (Clifford + T)
 - >30% reduction on entangling cost & ancillae needed, avoid single qubit gates (Clifford + CrX)
 - Currently working to demonstrate this advantage on a quantum device

Questions?

"Willers" Muye Yang - <u>willers@mit.edu</u> Xinjie He - <u>xinjieh@andrew.cmu.edu</u> Drew Gao - <u>drewgao@stanford.edu</u>