# QIP with NMR: Demonstrating Quantum Advantage

"Willers" Muye yang (Presenter)

Xiaoyang Zhuang (Lab Partner)

# Beating the Classical Computer



#### Quantum Information as Qubits



# Quantum Parallelism



# Realizing Qubits as an Ensemble of Spins

- Our physical qubits are implemented with the magnetic spin of two particles, the Hydrogen nucleus and the Carbon nucleus of  $CHCl_3$  denoted  $|H\rangle \otimes |C\rangle$
- On the right, the state can be written as

$$|0\rangle \otimes |+\rangle = \frac{|00\rangle + |01\rangle}{\sqrt{2}}$$

• Considers an ensemble of states



### Realizing Gates as Pulses and Free Evolutions

- Gates, or manipulation of these spin states, are realized via RF pulses.
- Single Rotations:

• 
$$R_{\chi}\left(\frac{\pi}{2}\right) = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -i \\ -i & 1 \end{bmatrix}$$

• 
$$R_y\left(\frac{\pi}{2}\right) = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$

• Free-Evolution:

• 
$$\tau\left(\frac{1}{2J}\right) = e^{\frac{i\pi}{4}}diag([-i,1,1,-i])$$



### Realizing Measurements as Spectra of FID



• A  $R_x\left(\frac{\pi}{2}\right)$  is applied to bring the spin into the transverse plane and the magnetic moment is measured for some time.



# Spectra & Peak Integrals of $|00\rangle$ (scaled by $10^5$ )



# Spectra & Peak Integrals of Eigenstates (scaled by $10^5$ )



### Two "Fast" Quantum Algorithms

#### 1. Deutsch-Jozsa Algorithm

- Determine if *f* is constant or faithful
- $O(2^n)$  on classical computer
- 1 query is sufficient on quantum computer



#### 2. Grover's Algorithm

- Search for an unknown variable  $x_0$
- O(N) on classical computer
- $O(\sqrt{N})$  on quantum computer



### Deutsch-Jozsa Algorithm on two qubits

Finding out if a coin is fair or rigged



- Classically we need two checks:
  - Check head (evaluate f(0))
  - Check tail (evaluate f(1))
  - Fair coin if  $f(0) \neq f(1)$ , rigged otherwise

2 Queries

- On quantum computer, we can check the "middle" side:
  - Evaluate  $U_f \frac{|0\rangle + |1\rangle}{\sqrt{2}}$
  - Fair coin if  $U_f|+\rangle=|00\rangle$  rigged if  $U_f|+\rangle=|10\rangle$

1 Queries

### Deutsch-Jozsa Algorithm Results



### Grover's Algorithm on two qubits

• Given f such that f(x) = -1 iff  $x = x_0$ ; and f(x) = 1 otherwise.

- Classically we need O(N) checks
  - Worst case: N-1 checks
  - Expected:  $\frac{N+1}{2}$  checks

| а | b | С | d  | е | f |
|---|---|---|----|---|---|
| 1 |   | 1 | -1 |   | 1 |

- Grover's Algorithm works by rotating a guess by  $\theta = 2\arcsin\left(\frac{1}{\sqrt{N}}\right)$  each iteration towards  $|x_0\rangle$
- $O(\sqrt{N})$  iterations needed total



## Search Result for $x_0 = |00\rangle$ with $H^{\otimes 2}|00\rangle$ as initial guess



#### Theoretical Expectation:

- Each iteration rotates our guess by  $\theta = 2 \arcsin\left(\frac{1}{2}\right) = \frac{\pi}{3}$ .
- Recover  $x_0$  after **one call**, then after every  $\frac{\pi}{\theta} = 3$  **iterations**.

#### **Experimental Result:**

- Peak integral is large after **one** iteration  $\rightarrow$  Matches with  $x_0$
- Peak integral is periodic with period 3.  $132 \pm 0.126$  iterations
- Peak integral decays overtime

#### Concluding Remarks

We've shown quantum advantage on query complexity

| Algorithm     | Classical Runtime |          | Quantum Runtime |               | Significance                               |
|---------------|-------------------|----------|-----------------|---------------|--------------------------------------------|
| Deutsch-Jozsa | 2                 | $O(2^n)$ | 1               | 1             | Oracle separation of <b>QEP</b> & <b>P</b> |
| Grover        | 2.5               | O(N)     | 1               | $O(\sqrt{N})$ | Potential Practical<br>Speed Up            |

- **NOT** the same as time complexity
- Future Direction: show quantum advantage for space complexity?

# Thank you!

Questions?

# Back-up Slides

#### Error Analysis

- Numerical schemes: 3% (for hydrogen) and around 10% (for carbon).
  - Improper shimming  $\rightarrow$  The spectrum is asymmetric.
- Uncertainty in the measurement of pulse widths propagates as the circuit grows larger.
- Background noise: Additional <1% uncertainty in the FID
- The uncertainties are larger for the Carbon qubit
  - Faster decoherence for Carbon (Smaller  $T_1$ ,  $T_2$  time)
  - Higher pulse width for a 90-pulse on Carbon

### Measurement Apparatus

Control and Job Assigning



### Calibrations

| Description               | Measurement Value              | Method/Comments                                                                                                                                            |  |
|---------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| J, coupling constant      | 215 ± 1 [Hz]                   | Difference between two peaks                                                                                                                               |  |
| $\phi_H,\phi_C$           | [10. (5), -40. (5)] <i>deg</i> | Using $t_{90}^H$ = 10 ms, $t_{90}^C$ = 22 ms.<br>Run NMRCalidb and rephase until imaginary part is <10% real part.                                         |  |
| $t_{90}^{H},\ t_{90}^{C}$ | $[10 \pm 1, 22 \pm 1]ms$       | Using $\phi_H$ , $\phi_C$ as above and run NMRCalib $\Delta=1,2,,30$ ms delay. Choose $t_{90}^H$ , $t_{90}^C$ to be arg max of the total response integral |  |
| $T_1^H, T_1^C$            | [19.(5), 12.(5)] s             | Using 90- $\Delta$ -180 for $\Delta$ = 1,500,, 10000 ms and fit exponential decay to peak integrals                                                        |  |
| $T_2^H$ , $T_2^C$         | [2.(2), 1.(2)] s               | Fit Lorentzian                                                                                                                                             |  |

#### Pure State Preparation

- For thermal state  $\rho_{therm} = diag[a,b,c,d]$ , cyclically permutating the last three canonically basis and averaging yields a new state  $\rho_{avg} = diag[3a,1-a,1-a,1-a]$ , since  $tr(\rho_{therm}) = 1$ . This is effectively a pseudo pure state  $|00\rangle$ .
- We can apply  $R_{\chi}^{C}(\pi)$  and  $R_{\chi}^{H}(\pi)$  to obtain the remaining pure states.

| State       | Left H Peak  | Right H Peak | Left C Peak  | Right C Peak |
|-------------|--------------|--------------|--------------|--------------|
| 00 (Id)     | 4.14 + 0.71i | 0.48 + 0.81i | 1.09 + 0.09i | 0.09+ 0.06i  |
| 01 (X_c)    | 2.05 - 0.63i | 2.59 + 0.36i | -0.82 -0.09i | -0.18-0.15i  |
| 10 (X_h)    | -2.45-0.78i  | 0.95 -1.20i  | -0.11-0.30i  | 1.13-0.24i   |
| 11 (X_cX_h) | -0.09-0.35i  | -0.70-0.02i  | 0.00+0.04i   | -0.78+0.27i  |

## CNOT and near CNOT performance

| Near CNOT | Left H Peak | Right H Peak | Left C Peak  | Right C Peak |
|-----------|-------------|--------------|--------------|--------------|
| 00 > 00   | 3.88+0.86i  | 0.36+0.58i   | 1.13 + 0.10i | -0.10+0.16i  |
| 01→01     | 1.36-0.40i  | 2.03-0.25i   | -0.93-0.53i  | -0.02-0.23i  |
| 10→11     | -1.47-0.32i | -1.16 -0.03i | -0.13+0.22i  | -0.93+0.66i  |
| 11→10     | -0.81-0.95i | -1.13-0.31i  | -0.04-0.05i  | 0.50-0.78i   |

| CNOT    | Left H Peak | Right H Peak | Left C Peak | Right C Peak |
|---------|-------------|--------------|-------------|--------------|
| 00 > 00 | 3.23+1.23i  | 0.33+0.60i   | 0.95 -0.02i | -0.12+0.11i  |
| 01→01   | 1.64-0.11i  | 1.86+0.24i   | -0.74-0.10i | -0.10-0.26i  |
| 10→11   | -1.90-0.20i | -1.15-0.55i  | -0.12+0.16i | -0.87+0.60i  |
| 11→10   | -1.62-0.97i | -0.61+0.10i  | -0.02-0.09i | 0.54-0.43i   |

#### 1. Deutsch-Jozsa Algorithm Details

#### Classically:

- We say a function f is
  - constant if f(x) = 0 or f(x) = 1 for all x,
  - Faithful if f(x) = 0 on exactly half of x, and f(x) = 1 otherwise
- Given function f guaranteed to be constant or faithful,  $O(2^{|x|})$  queries to f is needed to decide whether f is constant.

#### Quantum Analogue:

- Define  $U_f$  for a function f:  $U_f|x\rangle \otimes |y\rangle = |x\rangle \otimes |y \oplus f(x)\rangle$
- Exactly **one query** to  $U_f$  is sufficient:

$$\begin{split} R_{y}^{H}\left(-\frac{\pi}{2}\right)R^{C}\left(\frac{\pi}{2}\right)U_{f}R_{y}^{H}\left(\frac{\pi}{2}\right)R^{C}\left(-\frac{\pi}{2}\right)|00\rangle \\ &=\frac{1}{2}\left[(-1)^{f(0)}(|0\rangle-|1\rangle)+(-1)^{f(0)}(|0\rangle+|1\rangle)\right]\otimes|0\rangle \end{split}$$

• Which is  $\pm |00\rangle$  if f is constant, and  $\pm |10\rangle$  otherwise

#### 1. Deutsch-Jozsa Algorithm Details

• When |x| = 1, there are a total of 4 different functions:

|         | $f_1(x)$ | $f_2(x)$     | $f_3(x)$ | $f_4(x)$         |
|---------|----------|--------------|----------|------------------|
| Input 0 | 0        | 1            | 0        | 1                |
| Input 1 | 0        | 1            | 1        | 0                |
| Туре    | Constant |              | Fait     | hful             |
| $U_f$   | I        | $R_x^C(\pi)$ | CNOT     | $R_x^C(\pi)CNOT$ |

• Running  $R_y^H\left(-\frac{\pi}{2}\right)R^C\left(\frac{\pi}{2}\right)U_fR_y^H\left(\frac{\pi}{2}\right)R^C\left(-\frac{\pi}{2}\right)|00\rangle$  yields the following output:

# Constant | 00 >

 $U_{f_1}$ 

 $U_{f_2}$ 



Frequency [Hz]







# Faithful | 10)



 $U_{f_3}$ 



 $U_{f_4}$ 



#### Proton







### 2. Grover's Search Algorithm Details

#### Classically:

- Given function f, where  $f(x_0) = 1$  for exactly one input  $x_0$ , and we wish to search for  $x_0$ .
- Need to look through all inputs in O(N) time to find  $x_0$ .

#### Quantum Analogue:

- Define  $U_f$  for a function f:  $U_f|x\rangle = (-1)^{f(x)}|x\rangle$
- Recovers  $x_0$  with  $O(\sqrt{N})$  time!
- Each iteration rotates an initial guess by  $\theta = 2\arcsin(\frac{1}{\sqrt{N}})$  towards  $x_0$ .

#### Compiling Quantum Circuits –Elementary Gates

- We wrote custom class to hold quantum gates, and defined the (noncommunitative) ways two operators are combined.
- We verified with qiskit that these circuit identities indeed hold.

```
%Rotation for Hydrogen
R90x_h = Gate(1, "x", 0, "x", 0);
R90nx h = Gate(1, "-x", 0, "x", 0);
R90y_h = Gate(1, "y", 0, "x", 0);
R90ny_h = Gate(1, "-y", 0, "x", 0);
%Rotation for Carbon on 90 deg around x
R90x_c = Gate(0, "x", 1, "x", 0);
R90nx c = Gate(0, "x", 1, "-x", 0);
R90y_c = Gate(0, "x", 1, "y", 0);
R90ny_c = Gate(0, "x", 1, "-y", 0);
%Hadamard Gate
H_c = R90y_c + R90x_c + R90x_c
H_h = R90y_h + R90x_h + R90x_h
H = H c + H h
%Phase Shift
P = wait + R90ny_h + R90nx_h + R90y_h + R90ny_c + R90nx_c + R90y_c
%Wait Operator:
wait = Gate(0, "x", 0, "x", 1000/2/215);
%Near CNOT Gate
rCNOT = R90x_c + wait + R90ny_c;
%CNOT Gate
CNOT = R90nx_h + R90y_h + R90x_h + R90x_c + R90y_c + wait + R90ny_c;
%Empty (Identity) Gate
GE = Gate(0, "x", 0, "x", 0)
```

### Compiling Quantum Circuits –Algorithms

```
%Grover Oracles
                                011 = wait + R90ny_h + R90x_h + R90y_h + R90ny_c + R90x_c + R90y_c
% DJ Functions
U1 = GE
                                000 = wait + R90ny h+R90nx h+R90ny h+R90ny c+R90nx c+R90ny c
                                010 = wait + R90ny_h+R90nx_h+R90ny_h+R90ny_c+R90x_c+R90y_c
U2 = R90x h + R90x h
                                001 = wait + R90ny h + R90x h + R90y h + R90ny c + R90nx c + R90ny c
U3 = CNOT
U4 = U3 + U2
                                G00 = 000 + H + P + H
di1 = R90ny c+R90y h
                                G01 = 001 + H + P + H
dj2 = R90y_c+R90ny_h
                                G10 = 010 + H + P + H
                                G11 = 011 + H + P + H
```

#### Thumbnail

#### Deutsch-Jozsa Output

#### **Grover Output**

