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Beating the 
Classical Computer



Quantum Information as Qubits



Quantum Parallelism



Realizing Qubits 
as an Ensemble 
of Spins

𝐻 = 0

𝐶 = + =
0 + 1

2
• Our physical qubits are implemented 

with the magnetic spin of two 
particles, the Hydrogen nucleus and 
the Carbon nucleus of 𝐶𝐻𝐶𝑙! denoted

𝐻⟩⊗ |𝐶
• On the right, the state can be written 

as 

0 ⊗ + =
00 + 01

2
• Considers an ensemble of states



Realizing Gates as Pulses and Free Evolutions

• Gates, or manipulation of these 
spin states, are realized via RF 
pulses.
• Single Rotations:

• 𝑅!
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• Free-Evolution: 

• 𝜏 $
#& = 𝑒

"#
$ 𝑑𝑖𝑎𝑔([−𝑖, 1,1, −𝑖])



Fourier Transform

Read out FID for Pure State |00⟩

• A 𝑅!
"
#

is applied to bring the 
spin into the transverse plane 
and the magnetic moment is 
measured for some time.

Realizing Measurements as Spectra of FID



Proton Carbon
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Spectra & Peak Integrals of Eigenstates 
(scaled by 10!)
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Two “Fast” Quantum Algorithms

1. Deutsch-Jozsa Algorithm
• Determine if 𝑓 is constant or faithful
• 𝑂 2* on classical computer
• 1 query is sufficient on quantum computer 

2. Grover’s Algorithm
• Search for an unknown variable 𝑥+
• 𝑂 𝑁 on classical computer
• 𝑂 𝑁 on quantum computer 
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Deutsch-Jozsa Algorithm on two qubits

• Finding out if a coin is fair or rigged

• Classically we need two checks:
• Check head (evaluate 𝑓(0))
• Check tail (evaluate 𝑓(1))
• Fair coin if 𝑓 0 ≠ 𝑓(1), rigged otherwise

• On quantum computer, we can check the “middle” side:
• Evaluate 𝑈-

+ . $
#

• Fair coin if 𝑈- + = |00⟩ rigged if 𝑈- + = |10⟩

2 Queries
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Deutsch-Jozsa Algorithm Results



Grover’s Algorithm on two qubits

• Given 𝑓 such that 𝑓 𝑥 = −1 iff 𝑥 = 𝑥$; and 𝑓 𝑥 = 1 otherwise.

• Classically we need 𝑂 𝑁 checks
• Worst case: 𝑁 − 1 checks
• Expected: 7.$# checks 
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• Grover’s Algorithm works by rotating a guess by 
𝜃 = 2 arcsin ,

-
each	iteration	towards	|𝑥.⟩

• 𝑂 𝑁 iterations needed total



Search Result for 𝑥7 = |00⟩ with 𝐻⊗9|00⟩ as initial guess 

Theoretical Expectation:

• Each iteration rotates our guess by 
𝜃 = 2 arcsin !

"
= #

$
.

• Recover 𝑥% after one call, then 
after every #

&
= 3  iterations. 

Experimental Result:
• Peak integral is large after one 

iteration à Matches with 𝑥%
• Peak integral is periodic with 

period 𝟑. 𝟏𝟑𝟐 ± 𝟎. 𝟏𝟐𝟔 iterations
• Peak integral decays overtime



Concluding Remarks

• We’ve shown quantum advantage on query complexity

• NOT the same as time complexity
• Future Direction: show quantum advantage for space complexity?

Algorithm Classical Runtime Quantum Runtime Significance

Deutsch-Jozsa 2 𝑂(2*) 1 1 Oracle separation 
of QEP & P

Grover 2.5 𝑂(𝑁) 1 𝑂( 𝑁) 
Potential Practical 
Speed Up



Thank you!
Questions?



Back-up Slides



Error Analysis
• Numerical schemes: 3% (for hydrogen) and around 10% (for carbon). 
• Improper shimming  à The spectrum is asymmetric. 

• Uncertainty in the measurement of pulse widths propagates as the 
circuit grows larger.

• Background noise: Additional <1% uncertainty in the FID 

• The uncertainties are larger for the Carbon qubit
• Faster decoherence for Carbon (Smaller 𝑇$, 𝑇# time)
• Higher pulse width for a 90-pulse on Carbon



Measurement Apparatus

Signal Amplification

Control and Job Assigning 

Measuring

RF Pulse 
Generators



Calibrations 
Description Measurement Value Method/Comments

J, coupling constant 215 ± 1 [𝐻𝑧] Difference between two peaks

𝜙! , 𝜙" 10. 5 , −40. 5 𝑑𝑒𝑔
Using 𝑡#$! = 10 ms, 𝑡#$" = 22 ms.

Run NMRCalidb and rephase until 
imaginary part is <10% real part.

𝑡#$! , 𝑡#$" 10 ± 1, 22 ± 1 𝑚𝑠

Using 𝜙! , 𝜙" as above and run 
NMRCalib Δ = 1,2, … , 30 ms delay.

Choose 𝑡#$! , 𝑡#$" to be arg max of 
the total response integral

𝑇%! , 𝑇%" [19.(5), 12.(5)] s
Using 90-Δ-180 for Δ =

1,500, … , 10000 ms and fit 
exponential decay to peak integrals

𝑇&! , 𝑇&" [2.(2), 1.(2)] s Fit Lorentzian



Pure State Preparation

State Left H Peak Right H Peak Left C Peak Right C Peak

00 (Id) 4.14 + 0.71i 0.48 + 0.81i 1.09 + 0.09i 0.09+ 0.06i

01 (X_c) 2.05 - 0.63i 2.59 + 0.36i -0.82 -0.09i -0.18-0.15i

10 (X_h) -2.45-0.78i 0.95 -1.20i -0.11-0.30i 1.13-0.24i

11 (X_cX_h) -0.09-0.35i -0.70-0.02i 0.00+0.04i -0.78+0.27i

• For thermal state 𝜌%&'() = 𝑑𝑖𝑎𝑔 𝑎, 𝑏, 𝑐, 𝑑 , cyclically permutating the 
last three canonically basis and averaging yields a new state 𝜌*+, =
𝑑𝑖𝑎𝑔 3𝑎, 1 − 𝑎, 1 − 𝑎, 1 − 𝑎 , since 𝑡𝑟 𝜌%&'() = 1. This is 
effectively a pseudo pure state |00⟩.
• We can apply 𝑅!- 𝜋 and 𝑅!. 𝜋 to obtain the remaining pure states.



CNOT and near CNOT performance

Near CNOT Left H Peak Right H Peak Left C Peak Right C Peak

00→00 3.88+0.86i 0.36+0.58i 1.13 + 0.10i -0.10+0.16i

01→01 1.36-0.40i 2.03-0.25i -0.93-0.53i -0.02-0.23i

10→11 -1.47-0.32i -1.16 -0.03i -0.13+0.22i -0.93+0.66i

11→10 -0.81-0.95i -1.13-0.31i -0.04-0.05i 0.50-0.78i

CNOT Left H Peak Right H Peak Left C Peak Right C Peak

00→00 3.23+1.23i 0.33+0.60i 0.95 -0.02i -0.12+0.11i

01→01 1.64-0.11i 1.86+0.24i -0.74-0.10i -0.10-0.26i

10→11 -1.90-0.20i -1.15-0.55i -0.12+0.16i -0.87+0.60i

11→10 -1.62-0.97i -0.61+0.10i -0.02-0.09i 0.54-0.43i



1. Deutsch-Jozsa Algorithm Details

Classically:
• We say a function 𝑓 is 
• constant if 𝑓 𝑥 = 0 or 𝑓 𝑥 =
1 for all 𝑥,
• Faithful if 𝑓 𝑥 = 0 on exactly half 

of 𝑥, and 𝑓 𝑥 = 1 otherwise

• Given function 𝑓 guaranteed to 
be constant or faithful, 𝑶(𝟐 𝒙 )
queries to 𝑓 is needed to decide 
whether 𝑓 is constant.

Quantum Analogue:
• Define 𝑈0 for a function 𝑓: 
𝑈0 𝑥 ⊗ 𝑦 = 𝑥 ⊗ 𝑦⊕ 𝑓 𝑥
• Exactly one query to 𝑈0 is 

sufficient: 
𝑅'! − (

&
𝑅" (

&
𝑈)𝑅'!

(
&
𝑅" − (

&
00

=
1
2

−1 ) $ 0 − 1 + −1 ) $ 0 + 1 ⊗ 0

• Which is ± 00 if 𝑓 is constant, 
and ± 10 otherwise 



1. Deutsch-Jozsa Algorithm Details

• When 𝑥 = 1, there are a total of 4 different functions:

• Running  𝑅1. − "
#
𝑅- "

#
𝑈0𝑅1.

"
#
𝑅- − "

#
00 yields the 

following output:

𝑓%(𝑥) 𝑓&(𝑥) 𝑓*(𝑥) 𝑓+(𝑥)
Input 0 0 1 0 1

Input 1 0 1 1 0

Type Constant Faithful

𝑈) 𝐼 𝑅,"(𝜋) 𝐶𝑁𝑂𝑇 𝑅," 𝜋 𝐶𝑁𝑂𝑇
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Faithful  
|10⟩
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𝑈!>

𝑈!?

Proton 
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2. Grover’s Search Algorithm Details

Classically:
• Given function 𝑓, where 𝑓 𝑥$ =
1 for exactly one input 𝑥$, and 
we wish to search for 𝑥$.
• Need to look through all inputs in 
𝑂 𝑁 time to find 𝑥$. 

Quantum Analogue:
• Define 𝑈0 for a function 𝑓: 
𝑈0 𝑥 = −1 0 ! 𝑥
• Recovers 𝑥$ with 𝑂 𝑁 time!
• Each iteration rotates an initial 

guess by 𝜃 = 2arcsin( 2
3
)

towards 𝑥$.



Compiling Quantum 
Circuits –Elementary 
Gates

• We wrote custom class to 
hold quantum gates, and
defined the (non-
communtative) ways two 
operators are combined.

• We verified with qiskit
that these circuit 
identities indeed hold.



Compiling Quantum Circuits –Algorithms



Deutsch-Jozsa Output Grover Output

Thumbnail


