QIP with NMR:
 Demonstrating Quantum Advantage

"Willers" Muye yang (Presenter)
Xiaoyang Zhuang (Lab Partner)

Beating the Classical Computer

Quantum Information as Qubits

Bit

Qubit

|1)
|0>
$|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$

Quantum Parallelism

Quantum Computer

Computer

Realizing Qubits as an Ensemble of Spins

- Our physical qubits are implemented with the magnetic spin of two particles, the Hydrogen nucleus and the Carbon nucleus of CHCl_{3} denoted
$|H\rangle \otimes|C\rangle$
- On the right, the state can be written as
$|0\rangle \otimes|+\rangle=\frac{|00\rangle+|01\rangle}{\sqrt{2}}$
- Considers an ensemble of states

Realizing Gates as Pulses and Free Evolutions

- Gates, or manipulation of these spin states, are realized via RF pulses.
- Single Rotations:
- $R_{x}\left(\frac{\pi}{2}\right)=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}1 & -i \\ -i & 1\end{array}\right]$
- $R_{y}\left(\frac{\pi}{2}\right)=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]$
- Free-Evolution:

- $\tau\left(\frac{1}{2 J}\right)=e^{\frac{i \pi}{4}} \operatorname{diag}([-i, 1,1,-i])$

Realizing Measurements as Spectra of FID

Tyler Moore, 2011

- A $R_{x}\left(\frac{\pi}{2}\right)$ is applied to bring the spin into the transverse plane and the magnetic moment is measured for some time.

Read out FID for Pure State $|00\rangle$

Spectra \& Peak Integrals of $|00\rangle$ (scaled by 10^{5})

Proton

Carbon

Spectra \& Peak Integrals of Eigenstates

 (scaled by 10^{5})| $\|00\rangle$ | | \|01) | |
| :---: | :---: | :---: | :---: |
| Proton | Carbon | Proton | Carbon |
| | | | -0.8(7) |
| 4.19) | 1.16) | $2.666)$ | |
| | | | |
| Proton | Carbon | Proton | Carbon |
| -2.49) | | -0.7(5) | -0.8(7) |
| | 1.1(8) | | |

Two "Fast" Quantum Algorithms

1. Deutsch-Jozsa Algorithm

- Determine if f is constant or faithful
- $O\left(2^{n}\right)$ on classical computer
- 1 query is sufficient on quantum computer

2. Grover's Algorithm

- Search for an unknown variable x_{0}
- $O(N)$ on classical computer

- $O(\sqrt{N})$ on quantum computer

Deutsch-Jozsa Algorithm on two qubits

- Finding out if a coin is fair or rigged

- Classically we need two checks:
- Check head (evaluate $f(0)$)
- Check tail (evaluate $f(1)$)

2 Queries

- Fair coin if $f(0) \neq f(1)$, rigged otherwise
- On quantum computer, we can check the "middle" side:
- Evaluate $U_{f} \frac{|0\rangle+11\rangle}{\sqrt{2}}$
- Fair coin if $U_{f}|+\rangle=|00\rangle$ rigged if $U_{f}|+\rangle=|10\rangle$

1 Queries

Deutsch-Jozsa Algorithm Results

Grover's Algorithm on two qubits

- Given f such that $f(x)=-1$ iff $x=x_{0}$; and $f(x)=1$ otherwise.
- Classically we need $O(N)$ checks
- Worst case: $N-1$ checks
- Expected: $\frac{N+1}{2}$ checks

a	b	c	d	e	f
1		1	-1		1

- Grover's Algorithm works by rotating a guess by $\theta=2 \arcsin \left(\frac{1}{\sqrt{N}}\right)$ each iteration towards $\left|x_{0}\right\rangle$
- $O(\sqrt{N})$ iterations needed total

Search Result for $x_{0}=|00\rangle$ with $H^{\otimes 2}|00\rangle$ as initial guess

Theoretical Expectation:

- Each iteration rotates our guess by $\theta=2 \arcsin \left(\frac{1}{2}\right)=\frac{\pi}{3}$.
- Recover x_{0} after one call, then after every $\frac{\pi}{\theta}=\mathbf{3}$ iterations.

Experimental Result:

- Peak integral is large after one iteration \rightarrow Matches with x_{0}
- Peak integral is periodic with period 3.132 ± 0.126 iterations
- Peak integral decays overtime

Concluding Remarks

- We've shown quantum advantage on query complexity

Algorithm	Classical Runtime		Quantum Runtime		Significance
Deutsch-Jozsa	2	$O\left(2^{n}\right)$	1	1	Oracle separation of QEP \& P
Grover	2.5	$O(N)$	1	$O(\sqrt{N})$	Potential Practical Speed Up

- NOT the same as time complexity
- Future Direction: show quantum advantage for space complexity?

Thank you!

Questions?

Back-up Slides

Error Analysis

- Numerical schemes: 3\% (for hydrogen) and around 10\% (for carbon).
- Improper shimming \rightarrow The spectrum is asymmetric.
- Uncertainty in the measurement of pulse widths propagates as the circuit grows larger.
- Background noise: Additional <1\% uncertainty in the FID
- The uncertainties are larger for the Carbon qubit
- Faster decoherence for Carbon (Smaller T_{1}, T_{2} time)
- Higher pulse width for a 90-pulse on Carbon

Measurement Apparatus

Control and Job Assigning

Calibrations

Description	Measurement Value	Method/Comments
J, coupling constant	$215 \pm 1[\mathrm{~Hz}]$	Difference between two peaks
ϕ_{H}, ϕ_{C}	$[10 .(5),-40 .(5)]$ deg	Using $t_{90}^{H}=10 \mathrm{~ms}, t_{90}^{C}=22 \mathrm{~ms}$. Run NMRCalidb and rephase until imaginary part is $<10 \%$ real part.
t_{90}^{H}, t_{90}^{C}	$[10 \pm 1,22 \pm 1] \mathrm{ms}$	Using ϕ_{H}, ϕ_{C} as above and run NMRCalib $\Delta=1,2, \ldots, 30$ ms delay. Choose t_{90}^{H}, t_{90}^{C} to be arg max of the total response integral
T_{1}^{H}, T_{1}^{C}	$[19 .(5), 12 .(5)] \mathrm{s}$	Using $90-\Delta-180$ for $\Delta=$ $1,500, \ldots, 10000$ ms and fit exponential decay to peak integrals
T_{2}^{H}, T_{2}^{C}	$[2 .(2), 1 .(2)] \mathrm{s}$	Fit Lorentzian

Pure State Preparation

- For thermal state $\rho_{\text {therm }}=\operatorname{diag}[a, b, c, d]$, cyclically permutating the last three canonically basis and averaging yields a new state $\rho_{\text {avg }}=$ $\operatorname{diag}[3 a, 1-a, 1-a, 1-a]$, since $\operatorname{tr}\left(\rho_{\text {therm }}\right)=1$. This is effectively a pseudo pure state $|00\rangle$.
- We can apply $R_{x}^{C}(\pi)$ and $R_{x}^{H}(\pi)$ to obtain the remaining pure states.

State	Left H Peak	Right H Peak	Left C Peak	Right C Peak
00 (ld)	4.14 + 0.71i	$0.48+0.81 i$	$1.09+0.09 i$	0.09+0.06i
01 (X_c)	2.05-0.63i	$2.59+0.36 i$	-0.82-0.09i	-0.18-0.15i
10 (X_h)	-2.45-0.78i	0.95-1.20i	-0.11-0.30i	1.13-0.24i
11 (X_cX_h)	-0.09-0.35i	-0.70-0.02i	0.00+0.04i	$-0.78+0.27 i$

CNOT and near CNOT performance

Near CNOT	Left H Peak	Right H Peak	Left C Peak	Right C Peak
$00 \rightarrow 00$	3.88+0.86i	$0.36+0.58 i$	$1.13+0.10 i$	$-0.10+0.16 i$
$01 \rightarrow 01$	1.36-0.40i	2.03-0.25i	-0.93-0.53i	-0.02-0.23i
$10 \rightarrow 11$	-1.47-0.32i	-1.16-0.03i	$-0.13+0.22 i$	$-0.93+0.66 i$
$11 \rightarrow 10$	-0.81-0.95i	-1.13-0.31i	-0.04-0.05i	0.50-0.78i
CNOT	Left H Peak	Right H Peak	Left C Peak	Right C Peak
$00 \rightarrow 00$	3.23+1.23i	$0.33+0.60 i$	0.95-0.02i	$-0.12+0.11 i$
$01 \rightarrow 01$	1.64-0.11i	1.86+0.24i	-0.74-0.10i	-0.10-0.26i
$10 \rightarrow 11$	-1.90-0.20i	-1.15-0.55i	$-0.12+0.16 i$	$-0.87+0.60 i$
$11 \rightarrow 10$	-1.62-0.97i	$-0.61+0.10 i$	-0.02-0.09i	0.54-0.43i

1. Deutsch-Jozsa Algorithm Details

Classically:

- We say a function f is
- constant if $f(x)=0$ or $f(x)=$ 1 for all x,
- Faithful if $f(x)=0$ on exactly half of x, and $f(x)=1$ otherwise
- Given function f guaranteed to be constant or faithful, $\boldsymbol{O}\left(\mathbf{2}^{|x|}\right)$ queries to f is needed to decide whether f is constant.

Quantum Analogue:

- Define U_{f} for a function f : $U_{f}|x\rangle \otimes|y\rangle=|x\rangle \otimes|y \oplus f(x)\rangle$
- Exactly one query to U_{f} is sufficient:

$$
\begin{aligned}
& R_{y}^{H}\left(-\frac{\pi}{2}\right) R^{C}\left(\frac{\pi}{2}\right) U_{f} R_{y}^{H}\left(\frac{\pi}{2}\right) R^{C}\left(-\frac{\pi}{2}\right)|00\rangle \\
= & \frac{1}{2}\left[(-1)^{f(0)}(|0\rangle-|1\rangle)+(-1)^{f(0)}(|0\rangle+|1\rangle)\right] \otimes|0\rangle \\
- & \text { Which is } \pm|00\rangle \text { if } f \text { is constant, } \\
& \text { and } \pm|10\rangle \text { otherwise }
\end{aligned}
$$

1. Deutsch-Jozsa Algorithm Details

- When $|x|=1$, there are a total of 4 different functions:

	$f_{1}(x)$	$f_{2}(x)$	$f_{3}(x)$	$f_{4}(x)$	
Input 0	0	1	0	1	
Input 1	0	1	1	0	
Type		Constant		Faithful	
U_{f}	I	$R_{x}^{C}(\pi)$	CNOT	$R_{x}^{C}(\pi)$ CNOT	

- Running $R_{y}^{H}\left(-\frac{\pi}{2}\right) R^{C}\left(\frac{\pi}{2}\right) U_{f} R_{y}^{H}\left(\frac{\pi}{2}\right) R^{C}\left(-\frac{\pi}{2}\right)|00\rangle$ yields the following output:

Constant $|00\rangle$

$U_{f_{2}}$

Faithful

Proton

2. Grover's Search Algorithm Details

Classically:

- Given function f, where $f\left(x_{0}\right)=$ 1 for exactly one input x_{0}, and we wish to search for x_{0}.
- Need to look through all inputs in $O(N)$ time to find x_{0}.

Quantum Analogue:

- Define U_{f} for a function f : $U_{f}|x\rangle=(-1)^{f(x)}|x\rangle$
- Recovers x_{0} with $O(\sqrt{N})$ time!
- Each iteration rotates an initial guess by $\theta=2 \arcsin \left(\frac{1}{\sqrt{N}}\right)$ towards x_{0}.

Compiling Quantum Circuits -Elementary Gates

- We wrote custom class to hold quantum gates, and defined the (noncommuntative) ways two operators are combined.
- We verified with qiskit that these circuit identities indeed hold.

```
%Rotation for Hydrogen
```

%Rotation for Hydrogen
R90x_h = Gate(1, "x", 0, "x", 0);
R90x_h = Gate(1, "x", 0, "x", 0);
R90nx_h = Gate(1, "-x", 0, "x", 0);
R90nx_h = Gate(1, "-x", 0, "x", 0);
R90y_h = Gate(1, "y", 0, "x", 0);
R90y_h = Gate(1, "y", 0, "x", 0);
R90ny_h = Gate(1, "-y", 0, "x", 0);
R90ny_h = Gate(1, "-y", 0, "x", 0);
%Rotation for Carbon on 90 deg around x
%Rotation for Carbon on 90 deg around x
R90x_c = Gate(0, "x", 1, "x", 0);
R90x_c = Gate(0, "x", 1, "x", 0);
R90nx_c = Gate(0, "x", 1, "-x", 0);
R90nx_c = Gate(0, "x", 1, "-x", 0);
R90y_c = Gate(0, "x", 1, "y", 0);
%Hadamard Gate
%Hadamard Gate
H_c = R90y_c + R90x_c + R90x_C
H_c = R90y_c + R90x_c + R90x_C
H_h = R90y_h + R90x_h + R90x_h
H_h = R90y_h + R90x_h + R90x_h
H=H_c + H_h
H=H_c + H_h
%Phase Shift
%Phase Shift
P = wait + R90ny_h + R90nx_h +R90y_h+ R90ny_c + R90nx_c+R90y_c
P = wait + R90ny_h + R90nx_h +R90y_h+ R90ny_c + R90nx_c+R90y_c
%Wait Operator:
%Wait Operator:
wait = Gate(0, "x", 0, "x", 1000/2/215);
wait = Gate(0, "x", 0, "x", 1000/2/215);
%Near CNOT Gate
%Near CNOT Gate
rCNOT = R90x_c + wait + R90ny_c;
rCNOT = R90x_c + wait + R90ny_c;
%CNOT Gate
%CNOT Gate
CNOT = R90nx_h + R90y_h + R90x_h+ R90x_c + R90y_c+ wait + R90ny_C;
CNOT = R90nx_h + R90y_h + R90x_h+ R90x_c + R90y_c+ wait + R90ny_C;
%Empty (Identity) Gate
%Empty (Identity) Gate
GE = Gate(0,"x",0,"x",0)

```
GE = Gate(0,"x",0,"x",0)
```


Compiling Quantum Circuits -Algorithms

```
% DJ Functions
U1 = GE
U2 = R90x_h + R90x_h
U3 = CNOT
U4 = U3 + U2
dj1 = R90ny_c+R90y_h
dj2 = R90y_c+R90ny_h
```

```
%Grover Oracles
G00 = 000 + H + P + H
G01 = 001 + H + P + H
G10 = 010 + H + P + H
G11 = 011 + H + P + H
```

011 = wait + R90ny_h+R90x_h+R90y_h+R90ny_c+R90x_c+R90y_c
000 = wait + R90ny_h+R90nx_h+R90ny_h+R90ny_c+R90nx_c+R90ny_c
010 = wait + R90ny_h+R90nx_h+R90ny_h+R90ny_c+R90x_c+R90y_c
001 = wait + R90ny_h+R90x_h+R90y_h+R90ny_c+R90nx_c+R90ny_c

Thumbnail

Deutsch-Jozsa Output

Grover Output

